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Abstract 

Meeting their Needs: The Algebraic Knowledge and Instructional Preferences of Students with 

Learning Disabilities 

  

by 

Kayla Neill 

 

Advisor: Nicora Placa 

 

Students with a learning disability (LD) are experts in their lived experiences within the 

classroom. Yet, little is known about the ways in which students with LD perceive their 

instruction in mathematics and whether this instruction meets their learning needs. Similarly, the 

mathematical thinking and content knowledge of students with LD is often excluded from the 

literature, particularly concerning algebraic concepts. Six high school students with LD from a 

large urban school district in the northeast United States participated in this two-part study. 

Semi-structured interviews were used to explore participants’ perceptions about their instruction 

within Integrated Co-Taught (ICT) mathematics classes. By using in vivo coding, data from 

semi-structured interviews were analyzed across and within cases. Findings from semi-structured 

interviews are presented in regard to the following four themes: (a) breaking down content, (b) 

pacing, (c) ensuring student understanding, and (d) group work. Additionally, mathematical task 

interviews were used to give voice to participants’ knowledge of linear functions. Data from 

mathematical task interview transcripts were analyzed using provisional coding, and data from 

students’ work were analyzed based on its validity and accuracy in relation to the mathematical 

task. Across tasks, participants demonstrated that their understanding fell into one of the 

following categories: (a) emergent understanding, (b) procedural understanding, and (c) 

conceptual understanding. Results are discussed in relation to teacher implications and future 
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research with the hope that privileging the experiences of students with LD will further improve 

mathematics instruction for students with LD within an ICT setting. 
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CHAPTER I 

THE PROBLEM 
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Over the last twenty years, there has been a systematic effort to improve mathematics 

education in the United States. In addition to standardizing and defining academic proficiency in 

mathematics across states, the Common Core State Standards for Mathematics (CCSSM) were 

developed to prepare and promote college and career readiness for all students (NCTM, 2014). 

Through the design and implementation of coherent mathematics curricula, the CCSSM increase 

academic rigor and focus on the development of students’ conceptual understanding. Even 

though the Individuals with Disabilities Education Act (IDEA; 2004) mandates schools to 

provide students with a learning disability (LD) access to the same curriculum and CCSSM as 

general education students (Cramer, 2015; Jitendra, 2013; Lambert, 2018), students with LD may 

struggle academically compared to their peers without disabilities in mathematics (Cortiella & 

Horowitz, 2014). In addition to earning lower grades on standardized tests such as the National 

Assessment of Educational Progress (NAEP), and in class, as a group, students with LD are more 

likely to experience higher rates of course failure compared to students without disabilities 

(Cortiella & Horowitz, 2014). Furthermore, in the United States, only 68% of students with LD 

receive a regular high school diploma (Cortiella & Horowitz, 2014) compared to approximately 

85% of all students (National Center for Education Statistics, 2019). 

For students with LD to succeed at higher levels of mathematics, they must develop 

algebraic reasoning (Kaput, 1998; Thompson & Carlson, 2017). Linear functions is a 

fundamental algebraic concept (Hitt, 1998; Oehrtman et al., 2008; Teuscher & Reys, 2010; 

Wang et al., 2017) that is typically introduced in middle school, and it continues to appear 

throughout advanced mathematics classes (Teuscher & Reys, 2010). The concept of a linear 

function is presented to students as a dependent relationship typically expressed as y = mx + b, 

where m represents the rate of change and b represents the y-intercept. A linear function may 
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also be represented as a straight line on a coordinate plane with a constant rate of change (Wang 

et al., 2017). Dubinsky (1993) stated, “It can be argued that functions form the single most 

important idea in all mathematics, at least in terms of understanding the subject as well as for 

using it" (p. 527). However, researchers have found that students, including students with LD, 

often experience great difficulty learning algebraic concepts such as linear functions (Davis, 

2007; Herbert & Pierce, 2012; Knuth, 2000; Teuscher & Reys, 2010; Wilkie & Ayalon, 2018). 

Issues in developing their conceptual understanding in algebra may arise for students 

with LD because of the level of abstract thinking that algebra entails (Witzel et al., 2003). Rather 

than portraying mathematics in pictures or using concrete representations, algebra requires 

students to recognize and manipulate symbols as well as understand numerical relationships and 

mathematical structures (Linsell, 2009). Students often rely on memorizing facts and procedures 

(Capraro & Joffrion, 2006), or they resort to utilizing guess-and-check methods (Herscovics & 

Linchevski, 1994). Both of these strategies tend to be problematic for students with LD because 

they are time-consuming and depend on students’ working memory. In addition to having trouble 

with their working and long-term memory, students with LD experience difficulties organizing 

and manipulating information (Jitendra, 2013). As a result, students may struggle to develop 

complex algebraic reasoning that would help them solve difficult tasks (Capraro & Joffrion, 

2006; Knuth et al., 2005). Additionally, teachers may limit students with LD from developing a 

deep understanding of algebraic concepts because of the manner in which they introduce 

mathematical content. Often teachers of students with LD utilize explicit instruction, which 

focuses on the memorization of procedures or the use of heuristics (Gersten et al., 2009; 

Lambert, 2018; Powell et al., 2013; Watt et al., 2016). As a result, students taught to use 
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procedural approaches grapple with applying algebraic skills to different situations (Capraro & 

Joffrion, 2006; Ellis, 2007).  

While proven as an effective teaching practice for students with LD (Gersten et al., 2009; 

Hattie, 2009), the use of explicit instruction conflicts with the CCSSM push for the active 

construction of knowledge through inquiry-based exploration, discussion, and reflection. This 

clash in instructional pedagogy (explicit versus inquiry-based) may create a potential challenge 

for teachers because there has been an increase in the number of students with LD educated in a 

general education setting for 80% or more of their school day (Cortiella & Horowitz, 2014). In 

the United States, co-teaching is a popular model used to educate students with LD in a general 

education setting (Cook et al., 2017). Co-teaching, also known as an Integrated Co-Taught (ICT) 

class, is a classroom setting in which a content teacher and a special education teacher work 

together as co-teachers to provide instruction to general and special education students (Cook & 

McDuffie-Landrum, 2020; Murawski & Lochner, 2011). Overall, the premise of an ICT class is 

that both co-teachers share the responsibility of implementing the standards-based curriculum to 

all students, including students with LD. However, the ways that co-teachers implement 

instruction within an ICT class may vary from school to school (Rexroat-Frazier & Chamberlin, 

2019). 

Little is known about the mathematical thinking of students with LD on linear functions 

or their perceptions of the instructional approaches used by co-teachers that best support their 

learning. For example, Lambert and Sugita (2016) found only seven qualitative peer-reviewed 

studies that showed evidence of the inclusion of students with disabilities in classrooms 

implementing a standards-based mathematics curriculum. Within those studies, student 

engagement differed vastly, and none of the studies included high school students (Lambert & 
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Sugita, 2016). As most of the research on students with LD in mathematics is quantitative in 

nature (Gersten et al., 2009; Lambert & Tan, 2017; Watt et al., 2016), the mathematical thinking 

of students with LD and their perceptions of their mathematics education have been left out of 

the literature (Lambert & Tan, 2017). Due to the limited research on the participation of students 

with LD in standards-based mathematics classes, it is unknown whether they can access the 

curriculum, demonstrate mastery of grade-level mathematical practices and standards, and 

develop their conceptual understanding. Rather, if progress is to be made in improving the 

algebraic skills of students with LD, there is a need to know more about their thinking and the 

ways in which they perceive their mathematics instruction. 

Research Questions 

1. Within an ICT setting, what types of instructional practices do students with LD perceive 

as supportive for their success in mathematics? 

2. What conceptions of linear functions do students with LD possess, as evident in their 

work on problems with abstract graphical representations and real-world connections?  

3. Based on existing literature, to what extent, if any, does the way in which students with 

LD approach tasks on linear functions differ from students without disability labels? 

Theoretical Frameworks 

In this study, the researcher sought to explore the preferences of students with LD 

regarding the instructional practices used within their ICT mathematics classes and their content 

knowledge of linear functions. As such, both the sociocultural theory and the constructivist 

theory were used to frame this study.  
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Sociocultural Theory 

In this study, the sociocultural theory was used in an effort to understand the ways in 

which students with LD perceive their instruction in mathematics within an ICT setting. Within 

this theory, students are thought to develop mathematical knowledge and skills through social 

interactions with those who hold a deeper level of understanding, such as teachers or peers. To 

encourage the development of mathematical knowledge, students need to participate in learning 

experiences through communicating with others to create a shared meaning (Steele, 2001). By 

communicating with others, students’ “growth of mathematical understanding occurs through a 

process of connecting earlier thought with new mathematical language in order to create more 

meaning. Explaining one’s thoughts to others becomes reasoning for oneself” (Steele, 2001, p. 

405). In the classroom, teachers are responsible for creating opportunities for students to 

appropriate new information through participating in joint activities. Students construct a 

concrete understanding through their social interactions (Vygotsky, 1978). 

In this study, the sociocultural theory was used to analyze students’ perceptions of their 

current and past instruction in mathematics in an ICT setting. Because the sociocultural theory 

focuses on the interactions mediated through language, this framework provided the opportunity 

to learn about the types of interactions students with LD found useful for their development of 

mathematical concepts. For example, how did students with LD value working in small groups 

with their peers? Was it helpful for students with LD to communicate their thinking to their 

teachers and peers? In addition, through the lens of the sociocultural theory, the researcher 

investigated the ways that students perceived their teachers’ efforts to incorporate or limit 

teacher-to-student and student-to-student interactions.  
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Constructivist Theory  

The constructivist theory was used to explore the cognitive development of students with 

LD. Within the constructivist theory, students use their knowledge to construct new 

mathematical knowledge (Woodward & Montague, 2002). Piaget (1967) noted, “All knowledge 

is tied to action, and knowing an object or an event is to use it by assimilating it to an action 

scheme” (pp. 14-15). By participating in goal-directed activities, students produce results. Either 

these results assimilate into the mathematical schemas that students have previously solidified, or 

the results cause stress or disturbance to their existing schema. As a result, students may be 

required to change the construction of their schemas to accommodate this new knowledge (von 

Glaserfeld, 1995). 

Because the purpose of this study was to explore the mathematical thinking of students 

with LD on linear functions, the constructivist theory provided a framework for understanding 

the current schema of linear functions for each student with LD. Throughout the mathematical 

task interview, students shared their current schema while completing several mathematical 

tasks. Probing questions were utilized not only to understand participants’ current schema better, 

but also to elicit information about the ways in which their actions assimilated to their current 

schema. Additionally, the constructive theory provided a framework to understand how 

participants tried to make sense of mathematical knowledge that did not align with their current 

schema and their attempt to construct a new schema.   

Conceptual Frameworks 

The purpose of this study was to explore ways that mathematics education researchers 

and educators can better support students with LD in mathematics by giving voice to their 

knowledge and experiences. IDEA defines a specific learning disability as  
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A disorder in one or more of the basic psychological processes involved in understanding 

or in using language, spoken or written, that may manifest itself in the imperfect ability to 

listen, think, speak, write, spell, or to do mathematical calculations. (IDEA, 2004, Sec. 

300.8(c)(10)) 

Research on ICT mathematics classes, instructional practices used to support students with LD in 

mathematics, and student voice framed the methods that were used to gather data in this study. 

Integrated Co-Teaching 

In the 1980s, only 16% of students with LD were included in general education classes 

(Gartner & Lipsky, 1987). Instead, students with LD were educated separately, typically known 

as a self-contained class, under the premise that they would benefit from a smaller class with a 

specialized teacher and materials (Gartner & Lipsky, 1987). However, students in self-contained 

classes were less likely to receive standards-based instruction and instruction of conceptual 

strategies compared to general education classes (Jackson & Neel, 2006). Within self-contained 

classes, the instruction was not as complex as instruction in general education classes 

(Wehmeyer, 2006). Additionally, students with disabilities were more engaged in academic-

focused instruction in general education classes than students that were educated in self-

contained settings (Logan & Keefe, 1997). Not only can students with disabilities show higher 

levels of achievement (Gartner & Lipsky, 1987) and student engagement, but also all students 

could benefit from the diversity in a classroom of students with and without disabilities. 

Federal legislation, such as IDEA and No Child Left Behind (NCLB; 2002), required 

schools to educate students with LD with their general education peers and provide students 

access to the general education curriculum. Consequently, schools started to educate students 

with LD with general education students through a practice known as ICT (Scruggs et al., 2007). 
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Within an ICT class, a content teacher and a special education teacher work together as co-

teachers to provide instruction to general and special education students in a way that meets the 

learning needs of a diverse group of students (Friend, 2008). Friend et al. (2010) defined co-

teaching as 

The partnering of a general education teacher and a special education teacher or another 

specialist for the purpose of jointly delivering instruction to a diverse group of students, 

including those with disabilities or other special needs, in a general education setting and 

in a way that flexibly and deliberately meets their learning needs. (p. 11) 

In an ICT setting, Friend et al. (2010) noted that teachers should allow for and encourage 

students to engage with each other rather than separating students with LD into their own group. 

Ideally, ICT provides the opportunity for students to learn from one another academically and 

socially. 

When planned and facilitated strategically, all students can benefit from an ICT class 

(Brendle et al., 2017; Scruggs et al., 2007). The premise of ICT is that instruction will improve 

because “the expertise of the masters of content – the content area teachers – are blended with 

and supported by the expertise of the masters of access – the specialists in differentiating 

instruction” (Villa et al., 2008, p. 16). In theory, co-teachers are better equipped to support 

students with disabilities and students that are at risk for failure because there are two teachers in 

the class, each with their own expertise (Cook et al., 2017; Magiera et al., 2005; Sileo & van 

Garderen, 2010). Co-teachers have access to a wider range of instructional strategies (Cook et 

al., 2017; Mastropieri et al., 2005), and they are expected to include these instructional and 

alternative strategies to improve the performance of students with varying abilities in the class 

(Cook & Friend, 1995). Additionally, co-teachers believe that ICT is advantageous to students 
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because students have more opportunities to receive individualized attention from their teachers 

(Rice & Zigmond, 2000; Scruggs et al., 2007; Sileo & van Garderen, 2010; Walther-Thomas, 

1997). Throughout instruction, special educators can monitor student progress, identify students 

that are struggling, and pull these students to a small group to provide appropriate and 

individualized support. In addition to academic benefits, participation in an ICT setting can help 

students with disabilities increase their self-esteem, confidence, and peer relationship skills 

(Fontana, 2005; Walther-Thomas, 1997). 

Some co-teachers may find it difficult to execute co-teaching models and strategies 

effectively (Scruggs et al., 2007). As a result, a common model of co-teaching utilized in 

mathematics classes is one teach, one assist (King-Sears & Strogilos, 2018; Pancsofar & Petroff, 

2016; Weiss & Lloyd, 2002). Usually, within the one teach, one assist model, the general 

education teacher leads instruction while the special education teacher moves around the 

classroom to assist students. In their work with elementary school teachers of a mathematics ICT 

class, Brendle et al. (2017) found that co-teachers believed co-teaching was beneficial for 

students, but that they lacked expertise in implementing a variety of co-teaching models. As a 

result, co-teachers relied mostly on the one teach, one assist model. Similarly, Magiera et al. 

(2005) found that co-taught mathematics classes continued to resemble the traditional class 

format, with the general education teacher primarily utilizing whole-class instruction. Within 

these classes, special education teachers had to find ways to support students through one-on-one 

instruction (Magiera et al., 2005). Often other circumstances force co-teachers to utilize the one 

teach, one assist model, such as the special education teacher lacking the content knowledge of 

secondary mathematics (Weiss & Lloyd, 2002; Zigmond & Matta, 2004). By having two 

teachers instead of one in the classroom, it would seem that instruction and access to the 
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standards-based curriculum for students with LD would improve. However, two teachers within 

an ICT setting does not ensure that instruction will differ from traditional, whole-class 

instruction. As such, research on mathematics co-teaching is needed because “far more literature 

exists describing co-teaching and offering advice about it than carefully studying it” (Friend et 

al., 2010, p. 9). 

As students within an ICT class are consumers of instruction, research should privilege 

their lived experiences (Lambert, 2016). However, there is limited research on the perceptions of 

students with LD about their ICT instruction, and even less is known in terms of their 

mathematics instruction (Strogilos & King-Sears, 2019). In their work with seventh- and eighth-

grade students in reading and language arts, Embury and Kroeger (2012) found that seventh-

grade students identified the general education teacher as the main teacher in charge. Students 

perceived that the special education teacher was responsible for working with students who may 

not learn as quickly as other students. However, in an eighth-grade class in which co-teachers 

used a variety of co-teaching models, students shared that both of their teachers were helpful to 

all students. In terms of middle school mathematics instruction, King-Sears and Strogilos (2018) 

found that students and co-teachers perceived that the one teach, one assist co-teaching model 

was used most frequently. Similar to Embury and Kroeger’s (2012) work, Strogilos and King-

Sears (2019) found that even though students could ask both teachers for help in mathematics, 

students shared that the general education teacher was the lead instructor and was the one in 

charge of the lesson. While not focusing mainly on mathematics instruction, in their study of 

high school students with LD, Leafstedt et al. (2007) found that students preferred to receive 

their instruction in a resource room setting in which they were separated from the ICT class. 
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These findings may possibly be due to the lesson’s pace, the style of teaching, or the number of 

students in the class. Leafstedt et al. (2007) noted that  

Students gave a great deal of importance to the special education teacher being able to 

teach fewer students, change the pace of the lesson, and teach in a different manner 

within the special education setting. This is in conflict with the rationale for co-teaching, 

which states that students will receive a wider range of instructional options when in a 

co-taught classroom. (p. 182) 

Existing research on ICT settings framed the semi-structured interview questions in this study 

with the purpose of learning more about the experiences of students with LD and their 

perceptions of instructional strategies used within their ICT mathematics classes.  

Instructional Practices 

To better support students with LD, there is a need to know which teaching practices 

students find beneficial for their learning. In an attempt to identify effective interventions for 

students with LD in algebra, Watt et al. (2016) reviewed literature from 1980 to 2014. To be  

included in their study, research was experimental, quasi-experimental, or a single case study 

design that included students with LD, focused on an algebraic concept aligned to a CCSSM, and 

measured the effect of an instructional intervention on student achievement. Only 15 articles met 

the requirements of their study, five of which were single case designs. Watt et al. used 

standardized mean differences from each study and created a total of 10 effect sizes, which were 

scaled to Hedge’s g. Watt et al. found that the concrete-to-representational-to-abstract (CRA) 

approach was the most common intervention and produced high effects (g = 0.53). All four 

studies that used the CRA approach found that participants showed significant growth from their 

pretest to posttest score (Scheurmann et al., 2009; Strickland & Maccini, 2013; Witzel, 2005; 
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Witzel et al., 2003). In addition, Watt et al. found that peer tutoring (g = 0.40), heuristic or 

mnemonic devices (g = 0.83), and graphic organizers (g = 0.57) were effective to highly 

effective strategies. 

To synthesize existing research, Gersten et al. (2009) conducted a meta-analysis on 

mathematics interventions for students with LD. After reviewing over 30 years of research, 

Gersten et al. included 42 quantitative studies in their analysis. After determining which studies 

addressed instruction or curriculum design, Gersten et al. coded each of these studies into one of 

six instructional components. Similar to the work of Watt et al. (2016), Gersten et al. calculated 

the effect size of each study as Hedge’s g and found the mean effect size (ES) for each of the six 

instructional components. In their work, they found that the following components of instruction 

were beneficial for students with LD: (a) explicit instruction (n = 11, ES = 1.22, p < .001); (b) 

the use of heuristics (n = 4, ES = 1.56, p < .001); (c) student verbalizations of their mathematical 

reasoning (n = 6, ES = 1.04, p < .001); (d) visual representations (n = 12, ES = 0.47, p <.001); 

and (e) range and sequence of examples (n = 9, ES = 0.82, p < .001). In addition, Gersten et al. 

(2009) highlighted that teacher feedback (n = 7, ES = 0.21, p < .10) and student feedback (n = 7, 

ES = 0.23, p < .05) were effective instructional components. Of these studies, only two focused 

on mathematics interventions for students with LD with a particular focus on algebraic concepts. 

Because the work of Watt et al. (2016) and Gersten et al. (2009) focused on studies that were 

quantitative in nature, little is known about the thoughts of students with LD in regard to these 

instructional practices. Additionally, many of these studies focused on a small group or 

individual student interventions. As such, it is unknown whether these instructional practices are 

used within ICT settings, and if they are used, to what extent students with LD perceive them as 

useful and advantageous for their learning. Instructional practices identified by Gersten et al. 
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(2009) and Watt et al. (2016) helped develop semi-structured interview questions in an effort to 

answer the first research question in regard to the types of instructional practices that students 

with LD perceive as supportive for their success in mathematics. 

Explicit instruction is an instructional practice commonly used to educate and study 

students with LD in mathematics. While explicit instruction was originally a teaching strategy 

used to facilitate high-quality instruction to a small group of students (Archer & Hughes, 2011), 

eventually, teachers began to utilize explicit instruction within a whole-class setting (Doabler & 

Fien, 2013; Hughes et al., 2017). In their work, Riccomini et al. (2017) defined explicit 

instruction as 

A group of research-supported instructional behaviors used to design and deliver 

instruction that provides needed supports for successful learning through clarity of 

language and purpose, and it promotes active student engagement by requiring frequent 

and varied responses followed by appropriate affirmative and corrective feedback, and 

assists long-term retention through use of purposeful practice strategies. (p. 4) 

Within explicit instruction, the teacher models and breaks down a new mathematical concept into 

discrete units or steps (Doabler et al., 2012; Weibe Berry & Namsook, 2008). The idea is that by 

breaking down content into parts, the teacher reduces the cognitive load placed on students based 

on their current skills (Archer & Hughes, 2011). Each part of the demonstration is clear and 

unambiguous (Archer & Hughes, 2011; Doabler & Fien, 2013). Following the completion of the 

demonstration, the teacher leads students in guided practice, which consists of students working 

with their teacher to complete a similar mathematical task to the one that the teacher modeled. 

During this time, students begin to take on some of the responsibility of solving the task 

(Doabler & Fien, 2013). The teacher can monitor student understanding and provide appropriate 
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and immediate feedback by asking questions and eliciting student participation (Doabler & Fien, 

2013; Hughes et al., 2017). Using students’ responses as evidence of their understanding, the 

teacher may even adjust instruction to meet the needs of the students (Heward & Wood, 2013). 

After guided practice, the teacher invites students to work independently, in pairs, or in small 

groups, to complete a similar task or series of tasks related to the mathematical concept that was 

modeled during instruction. By monitoring student progress, the teacher can provide small group 

support, if needed (Riccomini et al., 2017). 

The Council for Exceptional Children and the Collaboration for Effective Educator, 

Development, Accountability, and Reform (CEEDAR) Center identified explicit instruction as 

one of 22 “High Leverage Practices” for students with disabilities (McLeskey et al., 2017). 

Research has shown that students with LD benefit from direct, explicit instruction (Bryant et al., 

2003; Jitendra, 2013). In mathematics, students with LD are more likely to have difficulties 

planning and executing tasks, making connections between their prior knowledge and new 

mathematics content, and applying their knowledge to new situations (Archer & Hughes, 2011). 

Because explicit instruction focuses on teaching students how to complete the task through 

modeling and demonstrations, explicit instruction can minimize some of the challenges students 

with LD face when trying to problem-solve. Several studies have found that explicit instruction 

has been an effective method for supporting students with LD (Gersten et al., 2009; Graham & 

Harris, 2009; Hattie, 2009; Kroesbergen & Van Luit, 2003; Mastropieri et al., 1996; Swanson, 

2001; Vaughn et al., 2000). 

Even though explicit instruction has been proven as an effective teaching strategy for 

students with LD in mathematics, some researchers have argued that explicit instruction hinders 

students’ development of a conceptual understanding of mathematics. Researchers have shown 
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that students with LD made academic growth from pretest to posttest scores, and often this 

growth was statistically significant (Jitendra et al., 1998; Owen & Fuchs, 2002; Ross & Braden, 

1991; Xin et al., 2005). During explicit instruction, teachers break down content in a way that 

gives students a series of steps to solve a given task. Through repeated exposure, students can 

solve the same type of tasks. When given a posttest, students show growth using this procedure. 

However, less is known about how accurate students are in identifying when they should apply 

this knowledge and if they can apply it to other mathematical contexts. For example, many 

studies on explicit instruction have a narrow focus on a mathematical skill such as solving one-

step addition and subtraction problems (Gersten et al., 2009). Few studies have explored 

students’ development of more complex algebraic concepts through explicit instruction. In their 

work, Hord and Newton (2014) explained  

In the short term, explicit instruction is potentially effective to help students solve 

problems more quickly; however, this earlier introduction of explicit instruction may 

slow the progress of students with LD in becoming resilient, persistent problem solvers 

and developing deep conceptual understanding of topics. (p. 198) 

In her work, Lambert (2018) highlighted that researchers and educators sometimes assume that it 

might be too cognitively challenging for students with LD to construct their own knowledge. As 

a result, teachers rely on explicit instruction. However, Lambert argued that students with LD 

develop new mathematical knowledge based on their previous understanding, and, as such, they 

deserve to have access to standards-based instruction. Similarly, the National Mathematics 

Advisory Panel (Geary et al., 2008) noted that educators should not only rely on explicit 

instruction when educating students with LD in mathematics. 
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Student Voice 

To design instruction that meets the needs of students with LD in mathematics, there is a 

need to know which instructional approaches they believe work best for them. Often, research on 

students is from an objectivist paradigm in which researchers study students as objects that can 

be observed and measured (Gentilucci, 2004). However, Gentilucci (2004) noted that researching 

students from an objectivist paradigm fails to take into consideration the thoughts and feelings of 

students about their learning. Without considering students’ voices, it can be difficult to change 

instruction in a way that supports the improvement of student outcomes (Cook-Sather, 2002; 

Gentilucci, 2004; Mitra, 2003). For example, Cook-Sather (2002) explained that if the voices of 

students are excluded from research, then the full picture of education in both the classroom and 

school-wide is incomplete. As a result, educators cannot address the needs of students if those 

needs are unknown. To highlight the importance of student voice in educational research, 

Hammersley and Woods (1984) stated 

 There can be little doubt that pupils’ own interpretations of school processes represent a  

crucial link in the educational chain. Unless we understand how pupils respond to 

different forms of pedagogy and school organizations and why they respond in the ways 

that they do, our efforts to increase the effectiveness, or to change the impact of 

schooling will stand little chance of success. (p. 3) 

Sometimes teachers and mathematics education researchers make assumptions about the ways in 

which students learn best. However, students have knowledge, perspectives, and opinions that 

are different from adults and are based on their own unique experiences (DeFur & Korinek, 

2010; Mitra, 2003). More often than not, adults cannot replicate the perspectives of students 

(Mitra, 2003). The voices of students should be included in research to serve students throughout 
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their education. Furthermore, it was important to frame this study around the inclusion of student 

voice because teachers without a disability label have never experienced instructional practices 

in the same way as students with LD. 

The belief that giving voice to students with the notion that using their understanding can 

improve mathematics instruction guided the design of this study. Often schools and classroom 

instruction are not structured in a way that gives voice to students. As a result, schools do not 

adequately address students’ needs, and in some cases, their needs conflict with the structure of 

schools (Costello et al., 2000). However, in her work, Mitra (2003) stated 

Consulting with students on their views of teaching and learning has improved students’ 

understanding of how they learn, helped students gain a stronger sense of their own 

abilities, and improved instruction so that teachers do a better job meeting student needs. 

(p. 3)  

Because students are the ones receiving the instruction, they are experts in the classroom 

experience (DeFur & Korinek, 2010; Mitra, 2003). Students “have singular and invaluable views 

on education from which both adults and students themselves can benefit” (Cook-Sather, 2002). 

Furthermore, researchers and educators should attempt to link student voice with curriculum and 

instruction in an effort to improve instructional practices, student engagement, and student 

outcomes (DeFur & Korinek, 2010; Oldfather, 1995; Rudduck & Flutter, 2000). In her work, 

Mitra (2003) studied general education students providing feedback to their teachers. Students 

shared the types of classroom and teaching styles that worked best for them. Furthermore, 

teachers valued this feedback and considered it when planning future lessons. Some teachers 

began to collaborate with students on a regular basis to modify the curriculum and receive 

feedback on instructional strategies and pedagogy. Teachers felt that incorporating student voice 
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into their work was advantageous. In addition, listening to students can make instruction more 

accessible (Commeyras, 1995; Dahl, 1995; Johnston & Nicholls, 1995). Because students with 

LD within an ICT setting were the focus of this study, the notion of accessibility was important. 

In the work of DeFur and Korinek (2010), students with disabilities shared that teachers should 

know their students’ needs and behaviors, and more importantly, they should know how to 

address those behaviors. Additionally, Cook-Sather (2002) suggested that researchers and 

educators ask students directly about their preferences for instruction and repeatedly ask because 

answers are not universal and will differ among contexts and students. 

In terms of the field of mathematics education, Lambert and Tan (2017) argued that 

students with LD and their voices are excluded from research because they are framed as 

“problematic.” In their work, Lambert and Tan (2017) wanted to explore the ways in which 

mathematics research addressed and studied students with disabilities and students without 

disabilities to identify a potential divide in research. Lambert and Tan identified 149 peer-

reviewed articles published between 2013 and 2015 that focused on students’ mathematical 

problem-solving in kindergarten through 12th grade. They paid particular attention to the 

theoretical framework and methods used within these studies. Lambert and Tan found that 86% 

of research studies on students with disabilities were quantitative in nature compared to 35% of 

research studies on students without disabilities. While 50% of research on students without 

disabilities were qualitative, only 6% of studies on students with disabilities were qualitative. 

More importantly, Lambert and Tan highlighted that students with disabilities were often studied 

through aggregate test scores. As a result, there was little to no analysis of individual student 

thinking. By studying students primarily through quantitative methods, Lambert and Tan (2017) 

stated that  
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Students with mathematical learning disabilities for example, often have particularly 

unique ways of approaching mathematics, yet research on these students is typically not 

sensitive to individual differences, instead seeking to understand all individuals with a 

single disability as a unified group. (p. 14)  

Similarly, researchers attempted to understand how students with disabilities solve mathematics 

problems through the medical, behavioral, and information processing approaches. However, for 

students without disabilities, their mathematics work was understood through the constructivist 

and sociocultural approaches (Lambert & Tan, 2017). Both the constructivist and sociocultural 

theories were used to frame this study on students with LD. 

Very few studies that focus on the perceptions of students with LD on their mathematics 

instruction exist. In their work, Leafstedt et al. (2007) interviewed high school students with LD 

regarding their experiences in an ICT classroom. While this study did not focus on mathematics 

instruction, Leafstedt et al. (2007) noted that students “were acutely aware of how they learned 

and how they wished to be taught” (p. 180). Not only did students explain that there were 

differences in the ways in which the general education teacher and the special education teacher 

presented materials, but they also shared that the special education teacher was better equipped 

to meet their needs. Additionally, students identified their learning preferences, which included 

teaching content slowly, breaking content down into steps, and explaining the content in 

different ways. Students highlighted that they benefitted from teachers differentiating and 

individualizing instruction, but that this type of practice happened less frequently within the 

general education classroom. Even when students with LD received their instruction from the 

special education teacher in the general education classroom, students still felt that their needs 

were not met. The purpose of the current study was to gain insight similar to the work of 



www.manaraa.com

23 

 

 

 

Leafstedt et al. (2007), in which students with LD articulated the types of instruction that did and 

did not work for them. However, this study paid particular attention to mathematics instruction 

within an ICT setting. To support the academic development of students with LD, the design of 

this study was based on understanding the ways that students with LD believe that they learn 

best, which includes their perceptions of their instruction and their educational setting in 

mathematics.  

Structure of the Dissertation 

This dissertation was written in a manuscript style in which Chapters II to IV are stand-

alone articles that will be submitted to different peer-reviewed journals. Chapter II addresses the 

first research question, “Within an ICT setting, what types of instructional practices do students 

with LD perceive as supportive for their success in mathematics?” Chapter II presents the 

findings from an interview study of high school students with LD who were enrolled in an ICT 

mathematics class. In this study, the researcher conducted semi-structured interviews with the 

purpose of honoring the voices of students with LD. Interview questions aimed to understand 

how students with LD perceived their instruction in mathematics with a particular interest in 

practices that they found beneficial and supportive of their learning and those they felt were 

disadvantageous. Because research on high school students with LD in mathematics is limited 

(Beatty & Bruce, 2012; Geary et al., 2008; Gersten et al., 2009; Lambert & Sugita, 2016; 

Lambert & Tan, 2016; Lambert & Tan, 2017; Watt et al., 2016), the researcher sought to 

understand the ways in which students with LD wanted to be taught in an effort to support them 

in the classroom better. Overwhelmingly, participants preferred explicit instruction, which 

involved teachers breaking down content and incorporating guided practice and repeated 

exposure to mathematics concepts. Participants highlighted that the pace of their mathematics 
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instruction was usually too fast, and they often found it difficult to keep up. Additionally, 

participants shared ways that their teachers ensured their understanding of the mathematics 

content. This article will be submitted to Theory, Research, and Action in Urban Education. 

Chapter III addresses the second and third research questions, “What conceptions of 

linear functions do students with LD possess, as evident in their work on problems with abstract 

graphical representations and real-world connections?” and “Based on existing literature, to what 

extent, if any, does the way in which students with LD approach tasks on linear functions differ 

from students without disability labels?” For this part of the study, the researcher utilized 

mathematical task interviews, also known as clinical interviews (Clement, 2000), to develop an 

understanding of the content knowledge of linear functions of students with LD. After 

participants completed the semi-structured interview that was included in Chapter II, the 

researcher conducted a three-part mathematical task interview with the same participants. 

Because students with LD often perform lower in mathematics on standardized tests such as the 

NAEP, in particular on the algebra subtest (Cortiella & Horowitz, 2014; Watt et al., 2016), there 

is a need to know their current level of understanding in order for teachers to provide them with 

appropriate, rigorous, and meaningful instruction. Additionally, the researcher considered the 

ways that participants’ thinking aligned or differed from the existing literature and research 

studies on linear functions for students without disability labels. On both mathematical tasks that 

were included within this study, participants demonstrated a procedural understanding of linear 

functions. While five of the six participants recalled appropriate procedures, their accuracy in 

applying these procedures varied. When asked to explain the meaning of the rate of change and 

y-intercept, participants showed a limited conceptual understanding of linear functions as they 



www.manaraa.com

25 

 

 

 

struggled to describe the rate of change and y-intercept in relation to the context of a real-world 

problem. This article will be submitted to Learning Disabilities Quarterly.  

Chapter IV is a resource to support teachers, both general education and special 

education, in their effort to encourage the development of a conceptual understanding of linear 

functions for students with LD. While based on existing literature of students without disability 

labels, this article attempts to highlight the importance of developing a conceptual understanding, 

and it provides suggestions for teachers on the ways that they can implement instruction within 

their classroom. The article begins by explaining students’ content knowledge of the rate of 

change. In particular, the article highlights students’ reliance on procedural knowledge when 

finding the rate of change. Next, the article addresses the potential benefits that transpire when 

teachers design instruction that incorporates a conceptual understanding. One way in which 

teachers can encourage a more in-depth understanding is through strategically incorporating real-

world problems into their instruction. However, it is noted that teachers should use caution when 

integrating real-world problems. Students can make incorrect connections using their prior 

knowledge, which leads them to develop misconceptions. Within the article, a table of common 

student misconceptions is included, and an appropriate research-based intervention is suggested 

to address each misconception or misunderstanding. Finally, the article discusses strategies that 

teachers can utilize to incorporate research-based practices for students with LD, such as 

integrating explicit instruction, heuristics, and student verbalizations. This article will be 

submitted as a research brief to the National Council of Teachers of Mathematics. 

Chapter V suggests that results from Chapter II and Chapter III can be used to begin to 

bridge two different divides that exist within the literature and the classroom. The hope is that by 

bridging these gaps, teachers and mathematics education researchers can better serve students 
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with LD in mathematics. The first is the divide between the amount of qualitative research 

conducted on students without disability labels and those with disability labels. Chapter V 

addresses the importance of utilizing qualitative methods, such as interviews, to give voice to 

students with LD. Results from Chapter II and Chapter III, which utilized interviews, begin to fill 

this problematic gap in the literature, and show the value of giving students with LD the 

opportunity to share their knowledge and experience. The second divide is the one that exists 

between explicit instruction and inquiry-based pedagogy. Even though participants in this study 

shared that they preferred explicit instruction, they also explained that they wanted their teachers 

to provide them with multiple problem-solving strategies. Furthermore, participants wanted their 

teachers to allow them to select whichever problem-solving method they felt most comfortable 

using. The idea of allowing students to use strategies based on their knowledge and strengths 

aligns with inquiry-based instruction. As such, Chapter V provides suggestions for mathematics 

education researchers and educators on how they can integrate instances of various types of 

instruction to best meet the needs of students with LD within an ICT class. 
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CHAPTER II 

“SOME KIDS UNDERSTAND THINGS DIFFERENTLY:” PERCEPTIONS OF 

STUDENTS WITH LD ON THEIR MATHEMATICS INSTRUCTION IN AN 

INTEGRATED CO-TAUGHT SETTING 
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Abstract 

This study investigated the perceptions of high school students with a learning disability 

(LD) educated within an Integrated Co-Taught (ICT) setting for mathematics. Semi-structured 

interviews were conducted with six students with LD. Guiding questions were used to explore 

instructional practices that students with LD found advantageous and disadvantageous. Results 

indicated that students preferred to receive explicit instruction in which their co-teachers broke 

down mathematical content into steps and incorporated guided practice and repeated exposure. 

Participants also valued when their co-teachers gave them the opportunity to ask questions and 

participate in group work. However, participants felt that their co-teachers did not always meet 

their learning needs, particularly regarding the speed of their instruction and how they explained 

the content. The results are discussed in terms of the following four major themes: (a) breaking 

down content, (b) pacing, (c) ensuring student understanding, and (d) group work.   
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As the number of students with a learning disability (LD) educated within a general 

education classroom increases, the need to identify instructional practices that best support 

students with LD in mathematics is imperative. The Individuals with Disabilities Education Act 

(IDEA; 2004) mandates schools to provide students with LD access to the same standards-based 

curriculum as students without disability labels (Cramer, 2015; Jitendra, 2013; Lambert, 2018). 

Although the intent of educating students with LD within a general education classroom is to 

improve academic performance, many students with LD struggle academically compared to their 

peers without disabilities in mathematics (Cortiella & Horowitz, 2014). In addition to earning 

lower grades on standardized tests, such as the National Assessment of Educational Progress 

(NAEP), and on in-class assessments and assignments, as a group, students with LD are more 

likely to experience higher rates of course failure compared to students without disabilities 

(Cortiella & Horowitz, 2014). Furthermore, in the United States, compared to approximately 

85% of the total population of students (National Center for Education Statistics, 2019), only 

68% of students with LD receive a regular high school diploma (Cortiella & Horowitz, 2014). 

One common way schools in the United States educate students with LD within a general 

education setting is through Integrated Co-Teaching (ICT; Scruggs et al., 2007). Within an ICT 

class, a content teacher and a special education teacher work together as co-teachers to co-plan, 

co-instruct, and co-manage a group of students with varying knowledge and skills (Murawski & 

Lochner, 2011). Co-teachers must present instruction that meets the learning needs of a diverse 

group of students and improves the performance of all students within the class (Cook & Friend, 

1995; Cook et al., 2017; Friend, 2008; Mastropieri et al., 2005). The premise is that an ICT 

setting gives “students with disabilities access to the general education curriculum, but also 

provides the specialized instruction they need to succeed” (Friend, 2016, p. 17). Explicit 
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instruction is an effective strategy for teaching students with LD. However, to encourage 

students’ development of a conceptual understanding of mathematics, co-teachers should 

consider and incorporate other practices that aim to promote classroom discussion and discourse 

(Stein et al., 2015). Much of the literature on teaching practices that foster a conceptual 

understanding is based on students without disability labels, as research is limited on students 

with LD in mathematics.  

Teaching Practices to Support Students with LD in Mathematics 

Explicit instruction is a commonly used practice to facilitate high-quality instruction 

within a whole class (Doabler & Fien, 2013; Hughes et al., 2017) or a small group setting 

(Archer & Hughes, 2011). During explicit instruction, the teacher models a new mathematical 

concept by breaking it down into discrete steps in an effort to reduce the cognitive load placed on 

students (Archer & Hughes, 2011; Doabler et al., 2012; Weibe Berry & Namsook, 2008). Once 

the demonstration is complete, the teacher leads students in guided practice. During guided 

practice, the teacher provides more examples of the same mathematical concept, and students 

begin to take on some of the responsibility of solving the task (Doabler & Fien, 2013). While 

asking questions and eliciting student participation, the teacher monitors students’ responses and 

provides appropriate and timely feedback (Doabler & Fien, 2013). After guided practice, the 

teacher invites students to work independently, in pairs, or in small groups, to complete a similar 

task or series of tasks. 

 In addition to being named a “High Leverage Practice” by the Collaboration for Effective 

Educator Development, Accountability, and Reform (CEEDAR) Center (McLeskey et al., 2017), 

researchers have shown that students with LD benefit from explicit instruction (Bryant et al., 

2003; Jitendra, 2013). After analyzing the results of 11 studies using targeted interventions for 



www.manaraa.com

31 

 

 

 

students with LD in mathematics, Gersten et al. (2009) found that explicit instruction had a large 

and meaningful effect on students’ mathematics achievement, often measured by an increase in 

scores from pretest to posttest. Similarly, in his review of over 800 meta-analyses, Hattie (2009) 

found that explicit instruction had a medium to high effect size on student achievement. Several 

other studies have found that explicit instruction has been one of the most effective methods used 

to teach students with LD (Graham & Harris, 2009; Kroesbergen & Van Luit, 2003; Mastropieri 

et al., 1996; Swanson, 2001; Vaughn et al., 2000).  

Researchers have found that students with LD as a group made academic growth from 

pretest to posttest scores and that growth was often statistically significant (Jitendra et al., 1998; 

Owen & Fuchs, 2002; Ross & Braden, 1991; Xin et al., 2005). However, less is known about 

how accurate students are in identifying when and how to apply this knowledge to other 

mathematical contexts. For example, Gersten et al. (2009) explained that many studies on 

explicit instruction had a narrow focus, such as finding the value of half of a quantity or solving 

one-step addition and subtraction problems. Few studies have explored students’ development of 

more complex algebraic concepts through explicit instruction. In her work, Lambert (2018) 

highlighted that researchers and educators sometimes assume that it might be too cognitively 

challenging for students with LD to construct their own knowledge. As a result, teachers rely on 

explicit instruction. However, both Lambert (2018) and the National Mathematics Advisory 

Panel (Geary et al., 2008) argued that explicit instruction should not be the only method used to 

teach students with LD in mathematics. 

In addition to explicit instruction, researchers have studied other teaching practices and 

pedagogy in an attempt to determine a relationship between practices and improved academic 

performance of students with LD. In their review of 42 quantitative studies over a 30-year 
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period, Gersten et al. (2009) found that student verbalizations of mathematical reasoning, range 

and sequence of examples, teacher feedback, and student feedback were beneficial for students 

with LD. Similarly, Watt et al. (2016) conducted an analysis of research on students with LD in 

algebra. While they found that the concrete-to-representational-to-abstract (CRA) approach was 

the most common intervention, other studies utilized peer tutoring, heuristic or mnemonic 

devices, and graphic organizers.  

Encouraging Student Participation and Discussion 

Participating in productive mathematical discourse may help students develop their 

conceptual understanding (Stein et al., 2015). Teachers play an essential role in facilitating 

whole-class discussion. One way teachers can do this is by asking open-ended questions. Posing 

an open-ended question provides all students, even students whose skills are still emerging and 

students with disabilities, access to some part of the task (Hoffer, 2016; Kendrick, 2010; Piccolo 

et al., 2008). Furthermore, open-ended questions give students a chance to solve the task in any 

way that they prefer. In their research, Manouchehri and Enderson (1999) found that by 

designing and implementing open-ended tasks to allow students to engage in authentic math 

inquiry, classroom discussion was robust. However, when teachers administered close-ended 

tasks, students completed the task independently and simply checked their final answers with 

their classmates. If students agreed on their final answers, little discussion occurred about the 

process taken to answer the question or students’ mathematical thinking (Lack et al., 2014). 

Teachers can limit student discourse and student participation through their actions in the 

classroom. Students usually direct their questions and answers to their teacher. For example, in 

an eighth grade mathematics class, students directed 88% of their comments toward their teacher 

(Mendez et al., 2007). In addition, Shepherd (2012) explored a teacher’s checks for 
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understanding during a teacher-led discussion and found that the teacher did not acknowledge 

74% of students’ attempts to participate. Even though teachers may not intend to limit student 

participation in discussion, their actions and practices result in fewer opportunities for students to 

participate in authentic mathematics discourse. 

Effectively incorporating and facilitating group work can help teachers encourage 

student-to-student discussion. When teachers monitored student group work and interacted with 

students, Gillies (2004) found that students in grades five through seven gave more detailed 

explanations of their understanding than students whose teachers provided explicit instruction. 

Additionally, Kazemi and Stipek (2001) highlighted that elementary school students with 

teachers who probed them during group work were more likely to provide detailed explanations 

and justify their problem-solving strategies than students with teachers who did not probe 

students. Instead, these students only summarized or listed the steps they took to solve the 

problem. As a result, little mathematical discussion occurred. However, DeSimone and Parmar 

(2006) shared that students with disabilities in middle school did not actively participate when 

teachers incorporated group work.  

Perceptions of students with LD of Instruction 

As students within an ICT class are consumers of instruction, research should privilege 

their lived experiences (Lambert, 2016). While limited, research that has included the voices of 

students with disabilities within an ICT class has focused primarily on the ways in which 

students perceive their co-teachers and the co-teaching models utilized during instruction. For 

instance, King-Sears and Strogilos (2018) found that students and co-teachers perceived that the 

one teach, one assist co-teaching model was used most frequently, and they found that students 

viewed the general education teacher as the lead instructor. Furthermore, there is limited research 
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about how students with LD perceive the way in which content is presented within an ICT 

setting, and even less is known in terms of mathematics instruction (Strogilos & King-Sears, 

2019). While not focusing particularly on mathematics instruction, in their study of high school 

students with LD, Leafstedt et al. (2007) found that students preferred to receive their instruction 

in a resource room setting in which they were separated from the ICT class. These findings may 

possibly be due to the pace of the lesson, the style of teaching, or the number of students in the 

class. Leafstedt et al. (2007) noted that 

Students gave a great deal of importance to the special education teacher being able to 

teach fewer students, change the pace of the lesson, and teach in a different manner 

within the special education setting. This is in conflict with the rationale for co-teaching, 

which states that students will receive a wider range of instructional options when in a 

co-taught classroom. (p. 182) 

Not only did students with LD within this study share that they felt their instruction within an 

ICT setting was ineffective or overwhelming, but they also articulated the support they needed 

from their teachers and the ways that their teachers could meet their needs. 

In theory, co-teachers have a more comprehensive range of teaching strategies that they 

can implement in an effort to meet the needs of a diverse group of students. However, while 

proven as an effective teaching practice for students with LD, the use of explicit instruction 

conflicts with the priority given to the active construction of knowledge through exploration and 

inquiry that is encouraged by the National Council of Teachers of Mathematics (NCTM). This 

clash in instructional pedagogy may create a potential challenge for co-teachers as well as 

students with LD. Very few studies have explored how students with LD perceive these 

instructional practices and the ways that their teachers implement and encourage participation in 
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a standards-based curriculum. For example, Lambert and Sugita (2016) found only seven 

qualitative peer-reviewed studies that showed evidence of the inclusion of students with 

disabilities in classrooms implementing a standards-based curriculum. None of these studies 

included high school students (Lambert & Sugita, 2016). Furthermore, in a review of 15 studies 

of students with LD in algebra, Watt et al. (2016) found that only 44% of the participants were 

Black, and only 13% were Hispanic.1 As such, there is a need to gain a more diverse perspective 

of students with LD. 

As most of the research on students with LD in mathematics is quantitative in nature 

(Gersten et al., 2009; Lambert & Tan, 2017; Watt et al., 2016), the perceptions of students with 

LD about their mathematics education are missing from the literature (Lambert & Tan, 2016). 

Due to the limited research on the participation of students with LD in standards-based 

mathematics classes, it is unknown which instructional practices their co-teachers are using, 

which they prefer, and which they believe are advantageous to their learning. To support students 

with LD within ICT mathematics classes, there is a need to know more about the ways in which 

they perceive their mathematics instruction. Thus, the following overarching research question 

and sub-research questions were developed: 

Research Question: Within an ICT setting, what types of instructional practices do students 

with LD perceive as supportive for their success in mathematics?   

Sub-Research Question 1: How do students with LD in an ICT setting prefer to receive 

instruction in mathematics?  

                                                
1  Cited as Hispanic in Watt et al.’s (2016) study 
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Sub-Research Question 2: What, if any, instructional practices do students with LD 

believe as disadvantageous to their learning experience in mathematics?  

Method 

 To address the research questions, an interview study was conducted. Semi-structured 

interviews were conducted with Black and Latinx high school students with LD.  

Participants 

Six students with LD who attended a public high school in a large urban school district in 

the northeast United States at the time of the study participated in this research. Participants 

attended different schools throughout this urban area. All participants met the following criteria: 

(a) had an Individualized Education Program (IEP); (b) self-identified as having a learning 

disability; (c) were enrolled in ninth, 10th, 11th, or 12th grade at an urban high school; (d) were 

enrolled in an ICT class for mathematics; and (e) gave student assent and obtained parent or 

guardian permission to participate. Table 1 shows the demographic characteristics of each 

participant at the time of the interview.  

Table 1 

Participant Demographics at Time of Interview 

Pseudonym Sex Age Grade Race/Ethnicity 

Julie Female 17 12 Black 

Joshua Male 17 12 Latinx 

Orlando Male 17 11 Black 

Michael Male 16 11 Latinx 

Felix Male 16 11 Black 

Maura Female 15 10 Black 

Note. Demographics self-identified by participants. 
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At the time of the study, none of the participants were classified as English Language Learners, 

nor were they receiving special education services for speech. The six participants in this study 

attended schools in which all students received free or reduced lunch. Additionally, it should be 

noted that the researcher did not gather the specific classification of LD for each participant. 

Rather than only including students with mathematics disabilities, all students with LD were 

included because the urban area in which this study was conducted does not differentiate 

between the types of LD on students’ IEPs. Unless students go to an outside agency for a 

diagnosis, the specific type of LD may be unknown to students, parents, and teachers. 

The researcher recruited participants by posting flyers at local community centers and 

snowball sampling. Six participants were included, and saturation across cases and amongst 

individual participants was evident. In terms of data across cases, the same codes were used, and 

no new codes or themes appeared when analyzing data (Urquhart, 2013). Similarly, data 

saturation was reached amongst individual participants, as enough data were collected from each 

participant to understand their specific point of view (Legard et al., 2003). 

Data Collection 

This study was part of a larger study in which participants completed a two-part interview 

with the researcher. The first part of the interview was a semi-structured interview, which 

explored participants’ perceptions about their mathematics instruction within an ICT setting. 

During the second part of the interview, participants completed a series of mathematical tasks 

with the purpose of sharing their understanding of linear functions. Only data from the semi-

structured interviews were included in this study. Semi-structured interviews were conducted 

over a two-month period between July and August. All semi-structured interviews were 

conducted by the researcher and lasted approximately 20 to 25 minutes. Due to the pandemic 
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caused by COVID-19, the researcher conducted all semi-structured interviews virtually through 

Zoom. The interviews were recorded and subsequently transcribed. 

With the purpose of giving voice to students with LD, the researcher asked participants to 

describe their experiences within an ICT mathematics class in high school. Interviews were 

semi-structured to allow the researcher to explore certain subjects in greater depth (Patton, 

2002). As such, interview questions were broad, including questions such as, “Describe some of 

the things that your mathematics teachers do that you find most helpful when learning math 

concepts” and “Thinking back to all of your math classes and co-teachers in the past, which do 

you think were the best at teaching you math concepts and why?” Semi-structured interviews 

also included several follow-up prompts such as, “What are some things that you like about your 

math instruction?” and “What are some things that you dislike or that you would like to change?” 

Interview questions were piloted with a focus group of eight middle school students with LD 

prior to the start of this study. The researcher did not identify any issues in the structure of the 

interview or the content. Based on the feedback from the pilot focus group, no changes were 

made to the sequencing or wording of the questions.  

Data Analysis  

Analysis of data was informed by the research questions (Creswell, 2015). The researcher 

began by analyzing data holistically across all six participants for significant instances related to 

participants’ perceptions and beliefs about common and beneficial instructional practices within 

their ICT mathematics classes. Data analysis began with in vivo coding to ensure that codes were 

participant inspired rather than researcher generated (Saldaña, 2009). Based on key terms and 

phrases that continued to appear throughout and across transcripts, 16 in vivo codes were 

identified. Using these 16 in vivo codes, the researcher coded line by line of each transcript. 
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After each line was coded, the researcher organized the 16 in vivo codes and data units into 

major and minor themes, uncovering both complementary and contradictory themes (Patton, 

2015). Originally, the researcher uncovered five major themes. After review, the researcher 

determined that some in vivo codes overlapped. As such, the researcher collapsed two major 

themes, and found four major themes across cases. Finally, the researcher utilized a member 

checking session with all six participants regarding the researcher’s categorical assertions and 

conclusions (Patton, 2015). Participants agreed with the researcher’s conclusions, and they 

believed that these conclusions aligned with their preferences and experiences.  

Results 

 Four themes emerged from the interviews with students with LD about their mathematics 

instruction in an ICT setting: (a) breaking down content, (b) pacing, (c) ensuring student 

understanding, and (d) group work. Each theme is described in detail.  

Breaking Down Content 

To some extent, all six participants mentioned that they wanted their mathematics 

teachers to “break down” new mathematics content. Not only did they each mention the term 

“break down,” but participants also described their meaning of “breaking down” content in a 

similar manner. To the participants, breaking down the content meant that teachers separated a 

problem into a series of smaller pieces or steps. Students followed along as teachers showed 

them how to solve the problem step-by-step. Participants shared that learning new content 

through steps helped them to understand the problem better, solve the problem, and be able to 

utilize their work as a reference point for future problems. The following quotes are indicative of 

participants’ perspectives about their preference for co-teachers to break down mathematical 

concepts into steps.  
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I feel like step-by-step in everything from the beginning to the end is best. I want them to  

go step by step on where I have to add, where I have to multiply, so that I can put it  

down on my paper, and when I do the next question, I can remember it. I can use the 

other question and try to solve the next question the same way and try to remember it. 

(Michael) 

I have a problem with comprehending questions, so the teachers will break down the 

question for me. They will help me with the first few steps of the question and then show 

me what to do afterwards, and then tell me if I am doing it wrong or if I am doing it 

correct. I thought this was very helpful. (Felix) 

It was helpful that we had her break down the problem into steps for us to understand. 

(Maura) 

I think it is helpful for problems with a lot of steps to have some directions or a list so 

that I know what to do for each step. (Julie)  

Joshua, who was entering his senior year of high school at the time of the study, mentioned that 

he favored his co-teachers during his sophomore year the most because his teachers knew when 

they could push him and his understanding further. One way they did this was by having him 

explain the work to his classmates. Joshua noted that this practice helped him to develop his 

understanding better as he learned to break down the topic in his own way.  

I think explaining it helped me to understand the work even more because I had to 

explain it. I had to break it down for the other students and that like helped me to learn 

how to break it down and understand the steps. (Joshua)  

Several participants shared that their teachers used visual reference points to help break 

down content for them, such as anchor charts or notebook pages. Participants explained that their 



www.manaraa.com

41 

 

 

 

teachers gave them a resource that not only showed each step of the problem, but also that they 

could “look back at” when they were stuck on a similar task.  

Umm ... they used posters to help us remember certain parts of the lesson. That was very 

helpful. I could ... I forgot a lot of stuff, and so with the posters, I was able to look at the 

posters and follow the steps. I would look at the poster to try to figure out the problem 

that I was having problems with. (Felix) 

Maybe like posters in the room with some of the stuff that we have learned. Give me 

examples so I can look at the example and if I get stuck, I could look back. (Julie) 

While some participants mentioned posters hanging around the room or on the board, others 

discussed that using their notebook was also advantageous for them. For instance, Felix used his 

whole notebook as a tool to develop his understanding by looking for similar concepts and 

problems. However, Maura explained that her teacher encouraged her to use sticky notes on key 

pages that would be beneficial for her to reference quickly and easily. 

In addition to breaking down mathematics content into discrete steps, participants 

emphasized that they preferred when their co-teachers included guided practice during 

instruction. Even though teachers can give students steps to solve a problem, participants felt it 

was imperative for their learning that they had a chance to practice their new knowledge under 

the guidance of their co-teachers because it gave them the opportunity to ensure that they 

understood the content before completing their work independently or in small groups. 

I like how she would do one problem together, and then we would do one problem on our 

own, and she would check it before we would go into groups or do our worksheet. 

(Maura) 
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It was helpful that I could do the work on my own and then check it with the class before 

we had to do it all on our own. (Orlando) 

They would break down each question to show us the steps to solve and let us try it so we 

could practice it. For me, when it comes to math, I have to be able to see my teachers do 

the problem on the board and I have to be able to write the problem out at the same time. 

To do it along with the teacher. (Felix)  

Participants favored repeated exposure during explicit instruction and guided practice 

when learning a new mathematical concept or skill. Not only did they want a chance to practice 

with their teacher as a whole class, but participants also wanted the opportunity to review and 

practice the series of steps multiple times. When asked about their mathematics instruction, 

participants wished that their teachers gave them more opportunities to apply their knowledge 

during the guided practice portion of the lesson. Because of limited repeated exposure, 

participants did not feel confident with their understanding of the new mathematical concept 

before working independently.  

I think the teacher has one type of problem and they break that problem down. But not 

just one time. They need to do it a few times and let us try it a few times. (Joshua) 

We really only do two questions together before we go on our own. So, I wish she would 

do maybe another one or two questions so that we really understand it and we can 

practice it before going on our own. I have to like … I have to try it on my own before I 

fully get it. (Maura) 

But, you know, we really didn’t get that much. I think they would just show us the 

problem only a few times before we had to do it on our own. (Julie) 
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All participants commonly mentioned references to explicit instruction, guided practice, and 

repeated exposure. Additionally, all participants shared that new content was presented through 

explicit instruction rather than through exploration or inquiry tasks. Although participants shared 

that they favored explicit instruction, they wished their teachers gave them more opportunities to 

work through problems together to ensure they understood the work before they were asked to 

complete their work independently or in groups.   

Pacing  

The pace of explicit instruction was a popular topic amongst all participants. Five out of 

the six participants felt that their mathematics instruction was rushed. Participants described 

instances in which their co-teachers would move on to the next problem or topic before they 

fully understood or had a chance to ask questions and receive clarification. In terms of daily 

instruction, participants described instances in which their co-teachers moved on to the next 

question or task before they felt ready.  

Sometimes she will move on to the next problem without like fully explaining it so that we 

understand it. She just moves on and some of us still have questions. I wish she would 

review it more. (Maura) 

They didn’t give us enough time to finish our work. (Felix) 

 

He doesn’t let the kids do it on their own for like five minutes instead of like …, ‘Oh you 

don’t understand? Okay, I am going to do it on the board all together.’ (Julie) 

The pacing of daily instruction was not the only concern of participants. Participants 

described that their co-teachers moved from one topic to another too quickly as well.  

Sometimes because we would only spend two days on it, it went a little too fast for some 

of us. (Michael) 
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Well, for me, I feel like it is a little rushed to be honest. Everything we do, when they 

teach you. Just when I thought I would be getting it, they would move on to the next thing. 

(Orlando) 

She goes over things quickly. She teaches some topics once and then she moves on and 

we do not always understand before she moves on. I think some kids might think it is hard 

because of the pace of the class. (Maura) 

Some of them went too quickly and definitely did not go over the work enough. They 

would go over it like maybe two or three days and they would think that everyone 

understands so they would move on, but not everyone did understand. And then kids 

might be asking for help but they just move on. (Joshua) 

While a majority of the comments about instructional pacing highlighted that the speed was too 

fast for participants, two participants shared instances in which their favorite co-teachers gave 

them a chance to complete their work at a pace that was sufficient for them.  

So my teachers never really went too fast for me because some of the other students 

couldn’t keep up. They sort of made sure that everyone had the notes before they would 

move on. I think that is important. If the pace is too fast, then I cannot follow along. 

(Felix) 

I think that he really showed us what we needed to learn as a class and then he gave us 

the time to practice it. (Joshua) 

With that said, Felix and Joshua noted that this was not common throughout their mathematics 

instruction in high school.  
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Ensuring Student Understanding 

Throughout the interviews, participants discussed several ways in which either they or 

their co-teachers monitored and ensured participants’ understanding of the mathematics content. 

Participants shared that they could better understand the work when their teachers presented and 

explained the content in different ways. Several participants mentioned that all students learn 

differently, and as such, teachers may want to consider those differences when teaching and re-

teaching mathematical concepts. Not only did participants highlight that they wanted the content 

presented in different ways, but they also wanted the opportunity to select and utilize the method 

that worked best for them.  

I like when they do not limit us to one method or one way to solve something. They  

showed us other ways. If this way is not working for me or it is difficult for me, they 

showed me different ways. I had the chance to pick which way worked for me. Everyone 

could pick which worked for them because it is different for me than it is for someone else 

in the class. I know that not everyone learns in the same way and likes the same method. 

(Joshua)  

I feel like sometimes her saying stuff in different ways is good. Some kids understand  

things differently. So, you could tell me something in a certain way and then explain it in 

another way with different vocabulary and some kids would understand it that way. 

(Michael) 

I like when teachers explain it in so many different ways that all of us would understand 

it in our own unique way. (Orlando) 
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Similar to preferring that their teachers explain the mathematics content in multiple ways when 

asked what they disliked about their mathematics instruction, participants indicated when their 

teachers limited them to only one method of solving a problem. 

Another teaching practice that participants discussed was the willingness of their co-

teachers to “go over it again.” When asked about reviewing content in which they found difficult 

or did not understand, participants described their co-teachers as willing to work with them one-

on-one, in a small group, or as a whole class to review the problem or content again. 

Furthermore, participants shared that they found this helpful and appreciated it when teachers 

would take the time to re-explain the problem to them. 

One of my teachers, she would go around when we were doing our work by ourselves and 

check and see if we understood it properly and if we didn’t, she would go over it again or 

ask another student to help us. If everybody needed it explained again, they would just 

explain it to the whole class again. (Felix) 

She will come to us when we do not understand and explain it again. (Maura) 

The teachers will go over it again, and if I need help with the problem, they would give 

me hints. They won’t do the work for me. They would ask me questions about what I 

would do next. They would read the directions and then they would be like, ‘What do you 

think you are supposed to do?’ (Julie) 

Even though participants highlighted instances in which their co-teachers answered questions 

and re-explained content to ensure student understanding, some participants felt that their co-

teachers did not always explain the work in a way that made sense to them. Additionally, a few 

participants mentioned that their teachers would re-explain the content in the same way they 

initially taught it. While they were appreciative that they could ask their teachers to re-explain 
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the concept, participants said that explaining it and re-explaining it the same way was not helpful 

for their understanding.  

 They need to be more flexible with how kids learn and understand and behave. They  

would only teach it one way. They like almost didn’t care if we didn’t get it. They just 

expected us to understand it in the way that they taught it. And if we didn’t, they were 

going to move on anyway. (Joshua)  

The way they explain it is like they are explaining it to people their age. They are not 

trying to explain it to us. They only explain it one way, and we are expected to just get it 

the way they explain it. If we don’t understand it, they will help, but usually they just 

explained it again the same way. That is not helpful. (Orlando) 

Other participants shared that even when teachers did re-explain the content, they still struggled 

to develop an understanding of the concept. As a result, participants simply followed along with 

the lesson. Because they felt that their teachers did not explain the content in a way that made 

sense to them, Michael and Orlando mentioned that they took the initiative to teach themselves. 

Sometimes I wouldn’t understand some of the stuff that they were saying, but I would like 

try to teach myself. (Michael) 

I would watch YouTube videos and try to understand it in my own unique way. But it was 

a challenge that I needed to have to let me know that not every teacher is going to meet 

my needs. There were so many students that I had to fend for myself. (Orlando) 

Four of the six participants highlighted that they could ask their teachers questions or ask 

for help if they did not understand their mathematics work. For the most part, participants felt 

that being able to ask their co-teachers questions was helpful for their learning.  

 If I still didn’t get it, I would ask the teachers questions or ask for help. (Julie) 
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When we have to ask questions, they are always willing to listen. (Michael) 

It was helpful for him to come together at the end to go over it so that we knew  

immediately whether our work was correct or incorrect and then we could ask him 

questions before we did the exit ticket. (Joshua) 

However, two participants shared that some of their mathematics teachers limited either their or 

their classmates’ attempts to ask questions during class instruction.  

 She just moves on and some of us still have questions. (Maura) 

Sometimes because she knew I understood everything that she was teaching, she wouldn’t 

really focus on letting me ask her questions. She would let other kids ask questions. But I 

was asking questions for the other kids. Like I was trying to help the other kids because 

not all of them wanted to raise their hands. They may have been too scared and they 

didn’t want to be judged. (Joshua) 

During the interview, participants were not asked directly about seeking extra help. 

However, five of the six participants described instances in which they received help from their 

teachers outside of their mathematics class. Not only did participants state that they sought out 

their teachers during lunch or after school, some even took it upon themselves to receive extra 

help from other teachers in their school.  

 Even if I didn’t understand it, they would always try to keep me after school or go to  

programs or come up at lunch. They were always there to help us if we needed it. 

(Michael) 

She tells us to come after school and we will go over it together. She will pull us at lunch 

and make sure we fully understand everything. (Maura) 
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They were very helpful and every time you needed help, they would always try to make 

the time. I would literally beg her to do Saturday school so she could help me. (Julie) 

Me, personally, I would go to another teacher. I would go to her for help and she would 

explain it to me. She was a special education teacher. I really like her style and how she 

taught. And then I would take her style and apply it to class. (Joshua) 

During their interview, participants shared several different ways in which their teachers sought 

to ensure student understanding. Often participants had the opportunity to ask their teachers 

questions or to review and re-explain a problem. However, participants noted that their teachers 

did not always explain the work in a way that allowed participants to access the content. 

Additionally, many participants had to take ownership of their learning and get extra help during 

their free time, such as at lunch or after school. Other students found it essential to teach 

themselves. Overall, there was a wide range of participants’ responses regarding how their 

teachers ensured that they understood the mathematics content during classroom instruction. 

Group Work 

Some participants described instances in which their teachers included partner and group 

work into their daily instruction. After co-teachers finished their explicit instruction and guided 

practice, participants explained that their co-teachers put them into groups. Participants preferred 

group work as an opportunity for them to work with and learn from their classmates. In addition 

to being given the opportunity to explain their knowledge to their classmates, participants shared 

that they could develop a deeper understanding of the content by listening to the perspectives of 

their peers.  

She made us do group work, and then we could help each other in our groups with the 

problems. (Michael) 
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It allowed me to see the things that I still needed to work on and thanks to my peers, I  

was able to work on those things and be a better student and get better at those topics.  

(Felix) 

I like to be able to explain my work and teach others because that helps me learn.  

(Maura) 

I think it is helpful to have us teach it to our classmates like ... so that we can explain it to  

each other. (Julie)  

Participants also described group work as a time for co-teachers to provide further 

support to students in a smaller setting if needed. While in groups, participants noted that their 

teachers would circulate the classroom, facilitating discussion and giving aid and assistance to 

students based on teachers’ assessment of student understanding.  

 Sometimes the teachers would break us into groups and one teacher would work with one  

group and another teacher would work with another group. (Felix) 

She puts us in groups of which group understands it and the other group she will sit down  

and she will help them. And every time you are struggling with something, they would go 

up to you and help you or they would put you in groups to help. So they were very 

helpful. (Julie) 

He would work with us one on one or in small groups, whichever the students were most  

comfortable with. (Joshua) 

Although participants found that teacher-led and student-led group work was a teaching practice 

that they preferred, three participants mentioned that because of the classroom management style 

of their co-teachers, group work was limited or did not exist at all. One participant shared that 

while his co-teachers did put the class in groups occasionally, students’ opportunity to participate 
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in group work was often cut short due to student misbehavior. As a result, students had to 

complete the work on their own.  

They will put us in groups, but sometimes if they are talking too much or they see that 

they are not doing the work, then they will have us do it alone. (Michael) 

The other two participants shared that they wanted to engage in group work with their 

classmates, but their teachers limited any opportunity for them to do so.  

We couldn’t really talk to each other during class. So I couldn’t help or explain it to my  

classmates. I tried when we had time, but we always had to work on our own and she 

would yell at us if we were talking. The teacher didn’t really let us interact with each 

other. If I tried to explain it to someone, I would get in trouble for talking. Even ... like I 

would tell them that I was trying to help, but they wouldn’t believe me, so I just tried to 

stop helping because I didn’t want to get in trouble. (Joshua) 

I think group work would be really helpful so that I could work with my peers and I could 

hear how they solved it and they could hear how I solved it. In middle school, I remember 

when I would be in a group, we could help explain the problems to each other and have 

different perspectives and we had a better understanding as a group to see how we can 

understand the topic. (Orlando) 

Participants expressed their preference for co-teachers to incorporate small group work into daily 

instruction. In addition to receiving support from their teachers, participants described the 

importance of being given the time to share their understanding with their peers. During group 

work, participants wanted the chance to learn from their peers so that they could all better 

understand the topic through different perspectives. However, because co-teachers have different 

classroom management styles, group work was limited in some participants’ classrooms.  
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Discussion  

In this research study, participants provided rich data that helped to understand their 

experiences with mathematics instruction in their high school ICT classes. Because research that 

includes the voices of students with LD is limited, little was known about their thoughts, 

preferences, and overall assessment of their mathematics instruction within an ICT setting. In 

line with the work of Leafstedt et al. (2007), participants in this study were aware of the ways 

they wanted to be taught. In the current study, participants shared that they preferred when their 

teachers broke down new mathematical concepts using explicit instruction and provided 

opportunities for repeated exposure and guided practice. Furthermore, participants wanted their 

co-teachers to show them multiple ways to solve a problem. Not only did participants feel that 

the pace of instruction was rushed, but they also had to use their free time during or after the 

school day to seek extra help from their special education teachers. The findings from this study 

bring up issues at both an instructional and policy level that have not received much attention in 

the literature because the voices of students with LD are so often left out. 

The participants in this study talked extensively about explicit instruction. While they did 

not reference the term explicit instruction directly, participants continued to mention “break 

down,” “step-by-step,” and “practice it,'' all terms that align with the concept of explicit 

instruction. These results are similar to the students with LD in Leafstedt et al.’s (2007) study, 

who also mentioned that they wished their work was broken down for them. To meet students’ 

needs, mathematics teachers can incorporate instances of explicit instruction such as modeling 

new mathematics material, and while doing so, breaking down content into individual steps 

(Doabler et al., 2012; Weibe Berry & Namsook, 2008). The results suggest that during explicit 

instruction, teachers may want to consider providing students with opportunities for guided 
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practice. During guided practice, teachers may want to encourage students to share their 

understanding, ask questions, and seek clarification. Incorporating opportunities for participation 

makes the thinking of students visible, not only to the teacher but to all students in the class. As a 

result, teachers can provide valuable and timely feedback (Bonner & Chen, 2019), which was a 

teaching practice that participants in the current study preferred. Immediate feedback gives 

students a chance to gauge their understanding and self-regulate their learning before completing 

their group work or independent practice. 

While participants shared that they preferred explicit instruction, it is essential to consider 

how students with LD perceive success in mathematics. For instance, do students with LD 

believe that success is their ability to follow a procedural approach? If so, one alternative 

explanation for the results of this study is that students with LD consider success as finding the 

correct answer using a procedure. Additionally, what does it mean when a student says that one 

particular instructional method helps them understand better than another? Another potential 

alternative explanation is that participants have only been exposed to explicit instruction, and as 

such, believe that they need it within their mathematics instruction to feel that they can be 

successful. Within this study, it is not clear the beliefs participants have about success. As such, 

more research is needed on the ways in which students with LD define and perceive achievement 

and success in mathematics. 

The participants in this study were acutely aware that all students learn differently. As 

such, participants shared that they wanted their co-teachers to show them multiple ways to solve 

the same type of problem. Additionally, they wanted their co-teachers to be more flexible and 

responsive to how students learn. It is essential that mathematics co-teachers continuously 

collaborate and reflect on the instructional practices they commonly use within their daily 
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instruction. Co-teachers may want to consider if any teaching practices are limiting students’ 

understanding. Certain teaching practices may be excluding students with LD from accessing the 

standards-based curriculum, such as requiring students to use a specific mathematical approach. 

In this study, some participants shared that they had to take the initiative to teach themselves a 

mathematical concept when their teachers did not acknowledge their learning needs and 

misunderstandings. One way in which teachers can encourage the inclusion of all students is by 

utilizing multiple teaching strategies rather than relying on only a few. Additionally, a more 

inclusionary practice would be to ask students about their preferences (Cook-Sather, 2002), and 

identify and honor the cognitive strengths of students with LD. Planning instruction in a way that 

encourages students to use their prior knowledge to develop new mathematical knowledge 

(Lambert, 2018) is another inclusionary practice that teachers may want to consider. To better 

support co-teachers, more research on effective teaching practices for students with LD in 

algebra is needed. Once these strategies have been identified, they can inform curriculum design 

and pacing, as differentiation strategies are a crucial component of instructional planning and 

implementation. 

The participants in this study described in detail that they felt the pace of instruction was 

rushed. Similar to those students with LD in Leafstedt et al.’s (2007) study, participants within 

the current study believed that the speed of daily lessons and the pace at which co-teachers 

moved from one topic to the next was too quick for them. Because of their co-teachers pacing 

through the curriculum, participants felt they did not have a chance to solidify their 

understanding. Overall, it was evident that participants wanted more time with the content, but 

why were they not afforded this opportunity? Furthermore, why was the pacing of instruction not 

meeting the needs of these students with LD? The premise of an ICT setting is that co-teachers 
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work together to provide instruction to meet the needs of a wide range of ability levels in a 

classroom of students with and without disability labels with the goal of improving the 

performance of all students (Cook & Friend, 1995; Cook et al., 2017; Friend, 2008; Mastropieri 

et al., 2005). However, improving or increasing academic achievement in mathematics may be 

challenging if the pace of instruction feels hurried to students with LD. Furthermore, is the 

pacing for students without disability labels also insufficient? Why or why not? To better 

understand instructional pacing, there is a need for research that explores how a larger group of 

students with LD perceives the speed of instruction within their ICT mathematics classes. 

Additionally, research that seeks to identify ways in which co-teachers can appropriately pace 

their instruction within an ICT setting to better meet the needs of students with LD is 

imperative.  

Within the classroom, co-teachers may want to give students the opportunity to share 

their thoughts about the speed of instruction and their understanding. One way that co-teachers 

can receive feedback about their instruction is by interviewing students (Mitra, 2003). However, 

a potentially more quick and private way of receiving student feedback is by giving students the 

chance to express and reflect on paper (Heritage, 2013). For instance, co-teachers can give 

students the opportunity to rate the speed of the lesson with options such as “too fast,” “too 

slow,” or “just right.” Similarly, teachers can provide students the opportunity to rate their 

understanding of the topic with options such as “I do not understand,” “I need some help,” “I 

understand it,” and “I can teach it.” Additionally, co-teachers can gather evidence in an effort to 

monitor student understanding by assigning an exit ticket at the end of class (Heritage, 2013). To 

better gauge students’ understanding, co-teachers may want to incorporate open-ended tasks, as 

they require students to show their work when solving, rather than circling an option on a 
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multiple-choice question. By reviewing students’ responses on the exit ticket, co-teachers can 

determine whether students grasped the lesson for that day. Co-teachers can use student feedback 

and exit ticket data to plan instruction for the following day (Bonner & Chen, 2019; Heritage, 

2013). In some cases, co-teachers may want to quickly review a misunderstanding, whereas in 

other cases, co-teachers may determine that they need to spend another day on a concept. 

Although data from exit tickets can be informative for co-teachers, external pressures 

may prohibit co-teachers from responding to data appropriately. Ideally, co-teachers can use data 

from exit tickets to modify the pacing of classroom instruction. However, teachers may feel 

pressure at the policy level to move on to the next concept before students are ready. The 

Common Core State Standards for Mathematics (CCSSM) were adopted in the state where this 

study was conducted. Toward the end of the school year, students are required to take a high-

stakes standardized test that assesses students’ mastery of the CCSSM. As such, teachers may 

feel the need to move from one concept to the next in order to teach the standards that will be 

assessed on the standardized test. The adoption of the CCSSM aims to ensure that all students 

throughout the entire state are learning the same content and have access to the same curriculum 

and standards. However, standards-based accountability that is often measured through high-

stakes testing is an exclusionary practice in which the needs of some students are being ignored. 

In the current study, the pacing of instruction was too fast for students with LD. As such, 

participants in this study may not have been receiving the high-quality instruction that they 

deserve and that federal law mandates (IDEA, 2004). Educational policy and school 

administration put teachers in a difficult decision making spot. For instance, do teachers respond 

to students and slow down instruction to meet students’ needs or do they continue to move 

through the curriculum? How do teachers’ decisions potentially affect or limit students’ 
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understanding of future lessons and content? At an even more basic level, how do teachers make 

these decisions, and how might decisions differ from teacher to teacher and school to school? 

The decisions that co-teachers make when planning and executing instruction can have long-term 

effects on students with LD in mathematics, such as limiting their conceptual understanding and 

their opportunity to access higher-level mathematics courses. Further research is needed on how 

co-teachers make instructional decisions and respond to data in their effort to provide high-

quality instruction to students with LD in ICT settings. 

Although participants were not explicitly asked about extra help, five of the six 

participants in this study discussed the need to seek extra help outside of their mathematics class. 

Often, participants in this study, and those in Leafstedt et al.’s (2007) proactively sought out their 

special education teachers on their own time to finish their work, ask for work to be re-explained, 

and receive extra help and practice. In the current study, some participants even found other 

special education teachers in their school for support. While participants did not express any 

negative feelings toward taking ownership of their learning and seeking assistance outside of 

class, often during their free time, it does raise several questions as to why this practice is 

occurring so frequently. Additionally, this finding brings up concerns as to why students with LD 

seeking extra help on their own time is such a popular practice across schools, as all participants 

attended different high schools in the urban area where this study was conducted. For example, 

are students with LD receiving appropriate help and individualized attention during class? What 

factors are limiting students with LD from completing their work during class? Is the rate that 

students with LD seek extra help outside of class similar or comparable to that of their peers 

without disability labels? Because students with LD must use their time at lunch or after school 

to meet with their teachers, are they excluded from opportunities to participate in other activities 
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or socialize with their peers? Finally, what happens to students with LD if they do not 

proactively meet with their teachers to complete their work or receive extra help? Students with 

LD may receive lower grades, leading to course failure (Cortiella & Horowitz, 2014) because 

their work is incomplete, or they may have difficulty developing their understanding of the 

content. Due to their incomplete understanding, students with LD may fall behind the pacing of 

the curriculum and standards. If students do not pass the high-stakes standardized test at the end 

of the school year, they may need to either repeat the class or retake the test until they achieve a 

passing grade. Based on these lingering questions and potential implications for students with 

LD, there is a need to explore and understand how ICT mathematics classes are structured and 

how students with LD are supported within these settings. 

Limitations and Implications 

The purpose of this study was to explore the perceptions of students with LD regarding 

their mathematics instruction within an ICT class. Because of the limited number of participants, 

the results must be interpreted with caution. Furthermore, these qualitative findings cannot be 

generalized beyond these participants but should be transferred to other similar contexts. 

Although semi-structured interviews provided many opportunities for student voice, data were 

self-reported by participants. Therefore, data were limited to what participants decided to 

disclose and not disclose to the researcher during the time of the interview. At the time the study 

was conducted, the pandemic caused by COVID-19 forced school closures throughout the 

United States. As a result, all participants received remote instruction for approximately three 

months of the 2019-2020 school year. Because the interviews were conducted in the summer of 

2020, this experience may have influenced participants’ responses about their mathematics 

instruction. Additionally, rather than being conducted in person, as previously planned, all 
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interviews were conducted virtually through Zoom. This platform may have also influenced 

participation. 

Further research on which teaching practices co-teachers are incorporating within their 

ICT mathematics classes is needed. Because explicit instruction was the most discussed and 

preferred practice, it is unclear whether participants in this study have been exposed to practices 

such as inquiry-based instruction. As such, participants in this study may have preferred explicit 

instruction because they have grown accustomed to it over the course of their educational 

experience. Explicit instruction seems to be a common practice utilized for mathematics 

instruction, as all participants in this study attended separate high schools with different teachers 

throughout the urban area where this study was conducted. Therefore, examining other 

instructional practices that align with a standards-based curriculum within an ICT class and how 

students with LD perceive these instructional practices is an area of additional research. Research 

in this area can help identify other instructional components that students with LD perceive as 

advantageous or disadvantageous. 

Even though this study presents several limitations, it does highlight the need to give 

voice to students with LD regarding their educational experiences and instructional preferences. 

Participants shared that explicit instruction was the primary mode of instruction within their ICT 

classes. While participants noted that they preferred explicit instruction, they described various 

ways in which their teachers did not meet their learning needs. Participants highlighted that 

explaining the content in multiple ways, repeated exposure, appropriate pacing, and group work 

would help them develop mastery of mathematics content better. To meet the needs of students 

with LD, further research on inclusionary teaching practices within ICT mathematics classes is 

essential. Furthermore, there is a need to study and re-examine the ways in which standards-
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based accountability is potentially excluding students with LD from receiving high-quality 

instruction. Most importantly, it is evident that students with LD are able to articulate their 

learning needs and preferences. As such, it is imperative that school administrators and educators 

do a better job giving a voice to their students. Teachers can administer learning preference 

surveys, multiple intelligence assessments, or simply conduct interviews with students at the 

conclusion of a lesson to receive feedback. Collaborating with students to receive their input 

regularly can help teachers determine appropriate instructional strategies and pedagogy. 

Furthermore, by giving voice to students, teachers can consider students’ preferences when 

modifying the curriculum and planning future lessons and units.  
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CHAPTER III 

DEMONSTRATING THEIR KNOWLEDGE AND UNDERSTANDING OF LINEAR 

FUNCTIONS: WHAT DO STUDENTS WITH LD KNOW? 
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Abstract 

To design effective mathematics instruction for students with a learning disability (LD), 

teachers may wish to consider students’ previous conceptions and misconceptions. However, 

little is known about the ways that students with LD think about linear functions. In the present 

study, six high school students with LD participated in a mathematical task interview, also 

known as a clinical interview. While completing a series of tasks on linear functions represented 

in different ways, participants shared their thinking while finding the rate of change and y-

intercept. Both participants’ mathematical work and the explanations of their work were 

analyzed. Results indicate that participants showed an emergent or procedural understanding of 

linear functions based on the manner in which they approached each task. There was little 

evidence of participants using methods that would suggest a conceptual understanding of the rate 

of change or y-intercept. While five of the six participants demonstrated that they could recall a 

valid procedural approach to find the rate of change and y-intercept, participants had a more 

difficult time executing these procedures with precision and accuracy. Participants’ procedural 

understanding of the rate of change and y-intercept were categorized into the following levels: 

(a) novice, (b) developing, or (c) proficient.   
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There have been ongoing efforts from the National Council of Teachers of Mathematics 

(NCTM) to reform mathematics education in the United States by increasing academic rigor. 

Rather than memorizing facts and procedures, the NCTM encourages teachers to push students 

to build a conceptual understanding while simultaneously developing students’ logic and 

reasoning skills (Jitendra, 2013; Montague et al., 2008). Students in the United States have 

shown growth in mathematics on the National Assessment of Educational Progress (NAEP) 

overall (Watt et al., 2016). However, compared to their peers without disability labels, students 

with a learning disability (LD) label still earn lower mathematics scores on the NAEP, 

particularly on the algebra subtest (Cortiella & Horowitz, 2014; Watt et al., 2016).  

To support students with LD in mathematics, there is a need to understand students’ 

content knowledge in algebra, as both Algebra I and Algebra II are required for high school 

graduation (NCTM, 2014; USDOE, 2010). Linear functions is an algebraic topic typically 

introduced in middle school, and it continues to appear throughout higher levels of mathematics 

(Teuscher & Reys, 2010). Not only is an understanding of linear functions foundational for 

algebraic thinking (Beatty & Bruce, 2012), but also Dubinsky (1993) explained, "It can be 

argued that functions form the single most important idea in all mathematics, at least in terms of 

understanding the subject as well as for using it" (p. 527). In their work, Capraro and Joffrion 

(2006) stated that an “understanding of linear equations and algebraic relationships is 

fundamental to preparing students for success in advanced algebraic concepts” (p. 147). 

However, both essential concepts of a linear function, the rate of change (Herbert & Pierce, 

2012; Teuscher & Reys, 2010; Wilkie & Ayalon, 2018) and the y-intercept (Davis, 2007; Knuth, 

2000), are often problematic for students with and without disability labels to understand 

conceptually. Students may struggle with these concepts because they tend to rely on certain 
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algebraic procedures (Zahner, 2015) rather than developing and utilizing a conceptual 

understanding of functions (Capraro & Joffrion, 2006).  

Rate of Change 

The rate of change is one of the two key concepts of linear functions. Ayalon et al. (2015) 

defined the rate of change as “a relationship in which changes in one variable can be expressed 

formally or numerically in terms of changes in another variable” (p. 323). In the early years of 

algebra or pre-algebra, teachers present the rate of change as the slope or steepness of a line. 

Often, teachers and students use these terms interchangeably (Teuscher & Reys, 2010). 

Researchers have studied the ways in which students without disability labels use the 

correspondence approach and the covariation approach to find the rate of change. Like the input-

output model of a function, in the correspondence approach, students develop a rule that allows 

them to solve for any value of y based on the value of x. On the other hand, the covariation 

approach “involves analyzing, manipulating, and comprehending the relationship between 

changing quantities” (Ayalon et al., 2015, p. 323). In their work, Ayalon et al. (2015) found that 

a higher percentage of students in Years 7 to 13 (i.e., US grades 6 to 12) in the United Kingdom 

used a correspondence approach compared to a covariation approach. Those students who used a 

covariation approach were more successful in accurately developing a sequential rule to 

complete the task. However, Wilkie and Ayalon (2018) found that students ranging from Years 7 

through 12 (i.e., US grades 7 to 12) in Australia favored and were more successful utilizing the 

correspondence approach than the covariation approach.  

To find the rate of change of a linear function, students may resort to using a procedural 

or pattern approach. When studying a ninth-grade bilingual algebra class, Zahner (2015) found 

that students utilized a procedural approach to find the rate of change of a linear function. 
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Although students could accurately find the rate of change using a computational procedure, they 

could not explain the meaning of the rate of change in terms of the context of the problem. For 

example, students described the rate of change as the “rise over run” or the “up and over.” Rather 

than developing an understanding of the underlying mathematical concept, students simply knew 

how to complete the steps of a procedure, which suggests that they understand functions at a 

superficial level (Kieran, 1992).  

Although finding the rate of change can be a difficult concept for students to grasp, an 

emphasis on quantities and how quantities relate to each other can help support students’ 

development. In her work, Ellis (2009) studied a seventh-grade mathematics class that focused 

on real-world quantities and an eighth-grade mathematics class that focused on patterns in a 

number table. Because the eighth-grade teacher taught students primarily using a table, many of 

their patterns referenced the columns of the table separately. For example, students noted that as 

x increased by one, the other side went up by seven. These students did not make a connection or 

establish a relationship between the independent and dependent variables. On the other hand, the 

seventh-grade students made better sense of linear functions such as y = mx + b situations 

because of their focus on quantities throughout the school year. They made accurate 

generalizations and global rules, and they explained and supported their ideas. 

Although students learn about the rate of change as early as middle school, they can 

develop incomplete or inaccurate understandings that have the potential to stay with them as they 

continue their education. In their work, Teuscher and Reys (2010) studied students in Advanced 

Placement (AP) calculus (n = 191). On a pre-assessment administered at the beginning of the 

school year, students showed that they had not yet mastered the concepts of slope, rate of 

change, and steepness of a graphical representation, and they did not understand the relationship 
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between these three concepts. When given a graphical representation of a function, students had 

a difficult time understanding that the sign of the slope was meaningful. For example, some 

students did not acknowledge the fact that a slope of -2 was different from a slope of +2. 

Although these students took math courses to prepare them for AP calculus, it was evident that 

they did not have a solid foundation of a mathematical concept that they would need to 

understand more abstract concepts such as derivatives. 

Y-Intercept 

Most textbooks refer to the y-intercept as the value of the y-coordinate when its x-

coordinate is zero or the value of the y-coordinate when the linear function crosses the y-axis on 

a graphical representation (Knuth, 2000). In his study of eight high school students, Davis (2007) 

found that students interchanged the terms start and y-intercept. When referring to a table, 16 of 

17 utterances were start. However, the use of the term start in these situations was not an 

accurate referral to the y-intercept. When asked to define the “starting point,” students shared 

responses such as the place where the function began, the value of y when x was equal to zero, or 

the place where the function crossed the y-axis on a graph. While some students could accurately 

define the y-intercept, they struggled to find the y-intercept from a table or an algebraic equation.  

Students have trouble recognizing that the y-intercept is a fixed amount. In their work, 

Pierce et al. (2010) studied 15-year-old students (n = 70) in Australia and found that students 

were more concerned about the rate of change than the y-intercept. When asked how much it 

would cost to hire a plumber who charged an initial hiring fee and a constant rate per hour of 

work, students often focused on how much it would cost based on the number of hours the 

plumber worked. Students did not refer to the y-intercept in their explanation. On the other hand, 

when asked to interpret the meaning of the y-intercept from a graph, some students did reference 
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the y-intercept. However, they considered the y-intercept the starting value when x = 1 rather 

than when x = 0. Students shared their interpretation of the graph as “start at $75 for the first 

hour and then just keep adding $50” (Pierce et al., 2010, p. 209). Similarly, Hattikudur et al. 

(2012) found that middle school students did not graph the y-intercept on the y-axis. Other 

students disregarded the given y-intercept and, instead, graphed the y-intercept at the origin of 

the coordinate plane. These misconceptions about the y-intercept are problematic because, to 

students, the y-intercept “is often seen as an accessory to the function, rather than a vital part of 

it” (Pierce et al., 2010, p. 212).  

Multiple Representations 

When working with functions, students may use or alternate between representations, but 

this does not necessarily mean that they have fully developed their understanding of functions. In 

their work, Adu-Gyamfi and Bosse (2014) studied eight high school students in a pre-calculus 

class in which instruction emphasized the use of multiple representations of functions when 

problem-solving. While students showed the use of alternative mathematical representations 

such as tables, graphical representations, and algebraic equations, Adu-Gyamfi and Bosse found 

that students transitioned between representations depending on the problem and their 

interpretation of the task. In addition, when deciding which representation students would use to 

solve the problem, Adu-Gyamfi and Bosse found irregularities with student reasoning and 

common and uncommon rationales for using selected representations. Similarly, Filloy and 

Sutherland (1996) suggested that students’ current stage of development might influence their 

use of different approaches and representations.  

If given the option, students tend to rely on algebraic equations. Of the 178 students in 

high school classes ranging from pre-algebra to calculus, 75% of students used an algebraic 
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approach as their primary method of solving functions, even when a different representation, 

such as a graphical approach, would have been easier (Knuth, 2000). In fact, Knuth (2000) noted 

that tasks in his study were designed in an effort to drive students to use a graphical 

representation. However, less than one-third of the participants used a graphical representation as 

their primary or alternative method. Many students did not even acknowledge that they could 

utilize a graphical representation. Furthermore, Knuth noted, “students failed to recognize or 

create the connection in the graph-to-equation direction” (Knuth, 2000, p. 503). Knuth’s findings 

support Hart’s (1981) work in that both found it was difficult for students to make a connection 

between ordered pairs on a graph and an algebraic equation.  

Conceptualizing Linear Functions for Students with LD 

Issues in developing conceptual understanding of algebraic concepts such as linear 

functions may arise for students with LD because of the level of abstract thinking that algebra 

entails (Witzel et al., 2003). Rather than portraying mathematics in pictures or using concrete 

representations, algebra requires students to recognize and manipulate symbols and understand 

numerical relationships and mathematical structures (Linsell, 2009). Furthermore, students with 

LD usually rely on memorizing facts and procedures (Capraro & Joffrion, 2006), or they resort 

to utilizing guess and check methods (Herscovics & Linchevski, 1994). To design instruction to 

meet the needs of students with LD, it is vital to give voice to their knowledge of linear 

functions. However, the research presented above focused on students without disability labels. 

In fact, little research on this topic includes students with LD, and the limited mathematics 

education research that does include students with LD focuses on elementary classroom 

instruction and concepts (Beatty & Bruce, 2012; Geary et al., 2008; Gersten et al., 2009). While 

high school students with LD may experience similar struggles to students without disabilities, 
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there is a need to know the ways in which students with LD think about linear functions. 

Revealing the content knowledge of students with LD can assist teachers as they develop and 

provide high-quality, rigorous instruction to students with LD. In an attempt to begin to fill this 

gap in the literature, the purpose of this study is to address the following research questions:  

1. What conceptions of linear functions do students with LD possess as evident in their 

work on problems with abstract graphical representations and real-world 

connections? 

2. Based on existing literature, to what extent, if any, does the way in which students 

with LD approach tasks on linear functions differ from students without disability 

labels? 

Method 

An interview study was conducted with high school students with LD. To address the 

research questions, each participant completed a series of three mathematical tasks.  

Participants 

This study was conducted with students with LD that attended a public high school in a 

large urban school district in the northeast United States at the time of the study. All participants 

met the following criteria: (a) were enrolled in ninth, 10th, 11th, or 12th grade at a large urban high 

school; (b) were enrolled in an Integrated Co-Taught (ICT) class for mathematics; (c) had an 

Individualized Education Program (IEP); (d) self-identified as having a learning disability; and 

(e) gave student assent and obtained parent or guardian permission to participate. The researcher 

recruited participants by posting flyers at local community centers and snowball sampling. Six 

participants were included in this study. Rather than only including students with mathematics 

disabilities, any student with LD was eligible to participate because the urban area in which this 
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study was conducted does not differentiate between the types of LD on a student’s IEP. In 

addition, because Watt et al. (2016) reviewed 15 studies of students with LD in algebra and 

found that only 13% of participants were Hispanic and 44% were Black, the researcher gave 

additional effort to recruiting students who identified as Black or Latinx to gain a more diverse 

perspective.2  However, this was not a requirement to participate. All six participants in this 

study attended schools where 100% of students received free or reduced lunch. The demographic 

characteristics of each participant in this study at the time of the interview are shown in Table 2. 

Table 2 

Participant Demographics at Time of Interview 

Pseudonym Sex Age Grade Race/Ethnicity 

Julie Female 17 12 Black 

Joshua Male 17 12 Latinx 

Felix Male 16 11 Black 

Michael Male 16 11 Latinx 

Orlando Male 17 11 Black 

Maura Female 15 10 Black 

Note. Demographics self-identified by participants. 

Data Collection 

This study was part of a larger study in which participants completed a two-part interview 

with the researcher. The first part of the interview was a semi-structured interview, which 

explored participants’ perceptions of their mathematics instruction within an ICT setting and 

results are reported elsewhere. The second part of the interview was a mathematical task 

                                                
2  Cited as Hispanic in Watt et al.’s (2016) study 
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interview, also known as a clinical interview (Clement, 2000), and comprise the data used in this 

study. Mathematical task interviews were conducted over a two-month period between July and 

August. All interviews were conducted by the researcher immediately following the semi-

structured interview and lasted approximately 30 to 45 minutes. Due to the COVID-19 

pandemic, the researcher conducted all mathematical task interviews virtually through Zoom. 

The researcher utilized PearDeck, a Google Slides Add On, which allowed the researcher to see 

participants’ work virtually, in real-time. The mathematical task interviews were audio recorded 

and transcribed by the researcher. 

During the mathematical task interview, participants completed a series of three tasks 

with a specific focus on linear functions. Two tasks were adapted from the Mathematics 

Assessment Resource Service (MARS; Mathematics Assessment Project, 2015), and one task 

was a short-response question from the state assessment in high school algebra. Although 

students completed three tasks during the mathematical task interview, the results from only two 

of the tasks were included in this study. These tasks were included because in both tasks 

participants had to write a linear equation by finding the rate of change and y-intercept. To better 

grasp participants’ understanding of linear functions, a real-world task was included to 

encourage students to use prior knowledge in their attempt to complete tasks on abstract 

mathematical concepts such as linear equations (Davis, 2007; Leinhardt et al., 1990). 

Additionally, to see if participants could explain the meaning of the rate of change and y-

intercept in terms of the context of the problem (Pierce et al., 2010), a table of values based on a 

real-world problem was incorporated. An abstract graphical representation was included because 

students’ prior knowledge of real-world problems may lead them to misinterpret linear equations 
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(Davis, 2007). Appendix G notes how each concept, the rate of change, the y-intercept, and 

multiple representations, aligned with each task.  

During interviews, the researcher read each task aloud to ensure that language and 

reading comprehension did not influence students’ access to the tasks. The researcher prompted 

participants to explain their actions and thoughts out loud (Lewis & Fisher, 2018) by asking 

questions such as “How did you solve that?” and “Tell me more about what you are thinking.” 

Furthermore, to gain a deeper understanding of students’ internal cognitive processes, the 

researcher encouraged students to justify their solution verbally, possibly by using a different 

method, and to explain their thought process (Hunt & Empson, 2015; Lewis & Fisher, 2018). 

The purpose of the mathematical task interview was not to test the accuracy of students’ work 

(Hunting, 1997), but rather to understand students’ underlying thoughts about a concept (Goldin, 

2000) and the ways in which they verbally, symbolically, and pictorially represent mathematical 

tasks (Hunt & Empson, 2015). 

Mathematics education researchers and teachers have used mathematical task interviews 

as a tool to design appropriate instruction to meet the needs of students. The Individuals with 

Disabilities Education Act (IDEA; 2004) requires that teachers deliver specially designed 

instruction to students with disabilities based on their strengths and needs (Lewis & Fisher, 

2018). To provide appropriate instruction, teachers may want to consider assessing students’ 

knowledge rather than making assumptions about students’ level of understanding based on their 

educational trajectory. Not only do mathematical task interviews allow for the investigation of 

students’ mathematical thinking (Ulusoy & Argun, 2019), but they also “can give more 

information on depth of conceptual understanding, since oral and graphical explanations can be 

collected, and clarifications can be sought where appropriate” (Clement, 2000, pp. 1-2). In his 
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work, Clement (2000) explained that an interview allows the investigator the opportunity to react 

and respond to data being collected at the moment. Based on data, the investigator has the 

opportunity to ask new or clarifying questions to gain more insight into naturally hidden thought 

processes. To support students with LD, mathematics education researchers and teachers can use 

mathematical task interviews to identify essential learning opportunities and align instruction 

accordingly.   

Data Analysis 

Data analysis was informed by the research questions. All mathematical task interviews 

were recorded and transcribed. In addition, participants’ mathematical work was collected and 

included as part of data analysis. Provisional coding was used to code each transcript. The 

researcher generated 12 provisional codes based on existing literature. As the literature on 

students with LD is limited in this field, the provisional codes were derived from existing studies 

on students without disabilities. During the first round of coding, the researcher went line by line 

of each transcript using the provisional codes. Next, based on the type of mathematical 

understanding that the provisional code would suggest, the researcher examined and organized 

the provisional codes into the following three themes: (a) emergent understanding, (b) procedural 

understanding, or (c) conceptual understanding. Participants that approached the mathematical 

tasks using irrelevant or invalid approaches showed an emergent understanding of linear 

functions. In this case, participants demonstrated little evidence of using procedural or 

conceptual approaches. Because a procedural understanding refers to students’ use and 

knowledge of mathematical language, symbols, rules, and algorithms (Capraro & Joffrion, 

2006), participants that followed step-by-step procedures demonstrated a procedural 

understanding. In terms of linear functions, participants that utilized the slope formula or a 
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pattern approach showed a procedural understanding (Teuscher & Reys, 2010; Zahner, 2015). 

Finally, a conceptual understanding refers to students building knowledge that is rich in 

relationships by linking new ideas to their previous conceptions (Stump, 2001). One example of 

a conceptual understanding would be the use of the covariation approach to develop accurate 

global rules of linear functions (Ayalon et al., 2015). Table 3 shows how some provisional codes 

were sorted into themes.  

Table 3  

Alignment of Provisional Codes with Themes  

Provisional Code Theme Example 

Covariation  Conceptual 

Understanding 

Participant mentions the relationship between the 

amount spent, in dollars, it took Tanya to make a 

various number of cards in Task 3 

Correspondence Procedural 

Understanding 

Participant develops a pattern that they could have used 

to solve for the amount Tanya spent based on a certain 

number of cards 

Slope Formula Procedural 

Understanding 

Participant substitutes the values of two coordinate 

pairs into the slope formula 

 

Finally, within these three themes, the researcher reviewed and analyzed participants’ 

mathematical work in terms of the accuracy of their reasoning and their solution. The researcher 

analyzed participants’ work on finding the rate of change and the y-intercept separately. Based 

on their work and their solution, the researcher classified participants into the following 

categories: (a) novice, (b) developing, or (c) proficient. A participant that recalled and attempted 

to use a valid procedure to find the rate of change or y-intercept was a novice within the theme of 

procedural understanding. A procedural novice differs from a participant with an emergent 

understanding. Rather than rather referencing, recalling, or using an approach that would indicate 

a procedural understanding of linear functions, such as the slope formula, a participant with an 
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emergent understanding used an invalid or inappropriate method to write a linear equation. Table 

4 provides an example for each level of skill under the theme of procedural understanding.  

Table 4 

Levels of Procedural Understanding Finding the Rate of Change. 

Theme Level Example 

Procedural Novice Identifies appropriate procedure but does not apply it 

correctly 

Procedural Developing Identifies and applies appropriate procedure with some 

accuracy but not consistent across both tasks 

Procedural Proficient Identifies and applies appropriate procedure with accuracy 

and consistency across both tasks 

 

Because the researcher analyzed students’ work on the rate of change and y-intercept separately, 

it was possible for a participant to be proficient in finding the rate of change, but a novice when 

solving for the y-intercept. 

Mathematical Tasks 

Mathematical task interviews were conducted with participants. Each interview consisted 

of three different tasks, all of which were related to linear functions. Only the results from two of 

the three tasks are included within the current study.  

Task 1 

Task 1 was adapted from another MARS resource (Mathematics Assessment Project, 

2015). In this task, students were given the first quadrant of a coordinate plane with eight 

graphed ordered pairs. Four of the points created a linear function, while the other four points 

represented a nonlinear function. To create a linear function, participants had to select and 

connect four of the ordered pairs. Then, participants had to write an algebraic equation to 
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represent the function. Figure 1 shows the abstract graphical representation given to participants 

in Task 1. 

Figure 1 

Mathematical Task Interview, Task 1 

 

 
 

Write a linear function that represents the line you drew connecting 4 of the points. 
 

 

While the original MARS task asked students to identify the ordered pairs on the linear function, 

this was removed for the purpose of this interview. The rationale for this decision was that 

identifying ordered pairs may potentially encourage participants to use a procedural approach 

rather than looking at the graph globally to determine the rate of change and y-intercept.  

Task 2 

 The researcher adapted the second task from a question that was given on a previous 

statewide assessment in high school algebra administered in the state where this study was 

conducted. In addition to writing a linear equation based on the table of values that represented a 

real-world scenario, participants were asked to explain the meaning of the rate of change and the 



www.manaraa.com

77 

 

 

 

y-intercept in relation to the context of the problem. Figure 2 presents the real-world context and 

table of values given in Task 2.  

Figure 2 

Mathematical Task Interview, Task 2 

 

 
 

 

Results 

Based on the manner in which participants approached the tasks, their understanding was 

organized into one of the following themes: (a) emergent understanding, (b) procedural 

understanding, or (c) conceptual understanding. Each level of understanding is described in 

detail.  

Emergent Understanding  

Of the six participants, only one participant in this study demonstrated an emergent 

understanding of linear equations. In Task 1, Orlando correctly identified only three of the four 

ordered pairs. When asked why he selected the incorrect ordered pair, Orlando shared that “(2, 8) 

would make the line straight.” Orlando did not mention or attempt to find a pattern from one 

coordinate to the next or prove that including the point (2, 8) would make a straight line. In the 
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next part of Task 1, Orlando had to find the rate of change. During this part of the task, Orlando 

did not identify or apply an appropriate approach to find the rate of change. Instead, Orlando 

focused on two ordered pairs on the plane, (1, 5) and (2, 8). Then, Orlando shared that the slope 

is 8 and the y-intercept is 5 because “the starting point is 5 and the ending is 8.” When probed 

further, Orlando could not clearly explain his rationale for the rate of change. Rather, he 

continued to focus on the two ordered pairs that he selected. Similarly, in Task 2, Orlando 

selected only one ordered pair from the table to write an equation. Orlando circled the pair (6, 9) 

on the table. Then, Orlando wrote that the equation as 6x = 9, which was incorrect. Orlando’s 

work in Task 1 and Task 2 demonstrates one issue with relying on procedural approaches. 

Although Orlando knew that he had to use the ordered pairs to write an equation, he struggled to 

recall what he needed to do with the coordinates. Instead of recalling and applying an appropriate 

procedure on this task, he used the values of the coordinates that he selected in his effort to write 

an equation.   

Procedural Understanding 

When looking across tasks, most participants relied on using procedural approaches when 

working with linear functions. Participants utilized the slope formula, pattern approaches, and 

substitution to find the rate of change and y-intercept of linear functions.  

Rate of Change 

The most popular procedural approach used by participants to find the rate of change was 

the slope formula. Four of the six participants attempted to use the slope formula in Task 1 and 

Task 2. The slope formula is 
𝑦2−𝑦1

𝑥2−𝑥1
, which consists of finding the difference between the y-

coordinate values and the difference between the x-coordinate values. Participants’ skills in 
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using procedures to find the rate of change varied and are presented below in the following 

levels: (a) novice, (b) developing, and (c) proficient.  

Novice. 

One participant was a novice in applying procedural approaches because she had a 

difficult time utilizing the slope formula accurately. During her interview, Maura could identify 

the slope formula, as she wrote the formula correctly. However, in both Task 1 and Task 2, 

Maura struggled to substitute coordinate pairs into the slope formula to find the rate of change. 

In Task 1, Maura accurately identified the four coordinate pairs that would make a linear 

function. However, Maura did not use any of these ordered pairs to find the rate of change. In 

addition, she made errors when substituting the values of the ordered pairs that she selected into 

the slope formula. This was also evident in her work on Task 2. Based on her work in Task 1 and 

Task 2, Maura showed a limited understanding of how to apply the slope formula to find the rate 

of change. Table 5 shows the values that each participant found for the rate of change in Task 1 

and Task 2.  

Table 5 

Participant Generated Rate of Change for Task 1 and Task 2 

Pseudonym Task 1 

m = -2 

Task 2 

m = 0.75 

Understanding Level 

Orlando m = 8 m = 6 Emergent NA 

Maura m -5 m = 1.16 Procedural Novice 

Julie m = - ½  m = 2 Procedural Developing 

Felix m = 2 m = 0.75* Procedural Developing 

Joshua m = -2* m = 0.75* Procedural Proficient 

Michael m = -2* m = 0.75* Procedural Proficient 

Note. * indicates that the participant found the correct value for the rate of change  
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 Developing.  

Two participants showed that they were still developing their skills in applying 

procedural approaches to find the rate of change. In Task 1, Felix utilized the slope formula, but 

he substituted incorrectly. Because of this mistake, Felix found that the rate of change was 2 

instead of -2. However, in Task 2, Felix accurately found the rate of change using the slope 

formula. Below is Felix’s explanation of the procedure he took to find the rate of change. 

Felix: Okay so in this case the two points would be (6, 9) and (10, 12). So, 12 minus 9 is 

3 and 10 minus 6 which is 4. So, the slope is 3 over 4. I could divide and that is 0.75. So 

y = 0.75x + b. 

In this task, Felix did correctly substitute all values from the coordinate pairs into the slope 

formula. Although Felix accurately found the rate of change in Task 2, his attempts to utilize 

procedural approaches were inconsistent and, as such, his skills were still developing.  

 Another participant used a pattern approach to find the rate of change. Rather than 

substituting coordinate pairs into a formula, Julie sought to find a pattern from one ordered pair 

to the next. In Task 1, Julie shared that she “counted the boxes” to find the rate of change. With 

that said, Julie identified the rate of change as – ½ instead of -2. Julie mentioned that she “went 

over and up” as she was counting, which caused her to confuse the relationship between the 

variables. Similar to her approach in Task 1, in Task 2, Julie attempted to find a pattern in the 

table of values. Julie’s thoughts about finding the rate of change in Task 2 are shared below.   

Julie: The number of cards is going up by 2 from 4 to 6 and then the amount spent in 

dollars is going up by ... From 7.50 and 9 it goes by 1.50. 

Researcher: Why do you think that?  

Julie: Because I was thinking about how I would graph it. So for the y-axis, it would be 
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the amount spent in dollars and the x-axis would be the number of cards. 

Researcher: Okay so what is the rate of change?  

Julie: The slope is 2. 

Julie demonstrated that she was still developing her skills and procedural understanding because 

she identified appropriate procedures to utilize but found an incorrect value for the rate of change 

in Task 1 and Task 2. Utilizing procedural approaches can be problematic for students with LD, 

as it requires them to recall and apply a series of steps from memory. Julie and Felix recalled 

valid procedural approaches, but they did not utilize them successfully on tasks that were 

represented in different ways.  

 Proficient. 

  Two participants were successful using the slope formula to find the rate of change in 

Task 1 and Task 2. Participants appropriately selected ordered pairs from the linear function and 

accurately substituted the values into the slope formula. Joshua and Michael’s explanations about 

finding the rate of change in Task 1 are shown below 

 Joshua:  First, I would find the slope. I would find 2 points. And I would do y2 minus y1  

over x2 minus x1. It is 7 - 9 over 3 - 2. 7 minus 9 is -2 and 3 – 2 is 1. -2 over 1 is -2.  

Michael: I made a mistake and did the y first. I did (9, 2) instead of (2, 9). So that would 

be 7 – 9 over 3 – 2. So that would be … 7 minus 9 is -2 over 1, which is -2.  

Similar to their work in Task 1, Joshua and Michael used the same approach to find the rate of 

change in Task 2. While Joshua and Michael found the value of the slope as the fraction of  ¾ for 

Task 2, they both explained that they divided the fraction to find the value of 0.75 as the rate of 

change. During their interview, Joshua and Michael identified and applied a valid procedure to 

correctly find the rate of change of two linear functions, each represented in a different way. 
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Using procedural methods can lead to a superficial understanding of the rate of change. 

Not only does relying on procedural approaches lead to memorization and calculation errors, but 

it also can be problematic for students when trying to create global rules or applying this 

procedure on tasks presented in different forms. Additionally, participants at the developing and 

proficient level recognized that they could select any two ordered pairs from the given 

representation to find the rate of change. However, after participants used the slope formula to 

find a ratio written in fraction form, they divided to find the rate of change as a decimal. For 

example, in Task 2, by dividing, participants found a single value as the rate of change, such as 

0.75. Identifying the rate of change as a single value may be problematic for students when 

explaining the relationship between the two quantities that make up the rate of change, as there is 

only one visible quantity in their answer.    

Y-Intercept 

 Participants’ efforts to find the y-intercept are presented below based on the following 

levels: (a) novice, (b) developing, and (c) proficient.  

 Novice.  

 Similar to her attempt to find the rate of change, Maura selected an appropriate procedure 

to find the y-intercept but failed to follow out the procedure correctly. In Task 1 and Task 2, 

Maura used substitution with an algebraic equation to find the y-intercept. Although Maura 

found an incorrect value for the rate of change in Task 1 and Task 2, she correctly substituted the 

value she found for the rate of change into the formula for a linear equation. Additionally, Maura 

knew that she needed to select and substitute the x and y values from one ordered pair into the 

linear function to find the y-intercept. However, Maura began to make errors when substituting 

and solving the equation. She had difficulty applying the appropriate procedures to solve for the 
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variable in the equation, such as isolating the variable. As a result, even based on her rate of 

change, Maura did not find the correct y-intercept for either task.  

 Developing.  

 Four participants demonstrated a developing level when using procedures to find the y-

intercept. When solving for the y-intercept Julie, Joshua, Michael, and Felix correctly found the 

y-intercept in one task, but not the other. The y-intercept that participants derived based on the 

task can be found in Table 6.  

Table 6 

Participant Generated Y-Intercept for Task 1 and Task 2 

Pseudonym Task 1 

b = 13 

Task 2 

b = 4.5 

Understanding Level 

Orlando b = 5 b = 9 Emergent NA 

Maura b = -44 b = -0.4 Procedural Novice 

Julie b = 13* b = 2.5 Procedural Developing 

Felix b = 5 b = 4.5* Procedural Developing 

Joshua b = 11 b = 4.5* Procedural Developing 

Michael b = 13* b = 19 Procedural Developing 

Note. * indicates that the participant found a correct value for the y-intercept 

Joshua, Michael, and Felix relied on a procedural approach that required them to substitute and 

solve an algebraic equation to find the y-intercept. Below describes the steps that Michael shared 

when solving for the y-intercept.  

Michael: I would take a point, and I would put it into the equation. I would take the (3, 7) 

and I would put the 3 in the spot of the x and the 7 in for y. I would multiply -2 times 3, 

which gives me -6. I would re-write it as 7 = -6 + b. Then I would add 6 to both sides. So 

the y-intercept is 13. 
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Michael’s explanation is similar to the responses that Joshua and Felix shared. In Task 1, Joshua 

and Felix incorrectly found the y-intercept. When solving, they did not attempt to graph the y-

intercept to see if it made sense as part of the linear function. Instead, once Joshua and Felix 

found the y-intercept, they simply rewrote the equation and shared that they were finished with 

the task. Rather than using a conceptual understanding to share how they could find the y-

intercept using another representation, Joshua, Felix, and Michael simply shared the steps they 

took to substitute and solve an algebraic equation to find the y-intercept. 

On the other hand, Julie was the only participant that referred to the graphical 

representation to find the y-intercept in Task 1. Julie extended the linear function by following 

the pattern on the graph until she reached the y-axis. In doing so, Julie correctly determined that 

the y-intercept was 13. In Task 2, Julie attempted to use the pattern that she found in the table to 

work backward to find the y-intercept. Julie determined that for zero cards, the amount of money 

spent by Tanya would be $2.50. In her work, Julie miscalculated the value for the rate of change; 

as such, her attempt to continue the pattern to find the y-intercept was unsuccessful. Julie 

explained her procedure for finding the y-intercept below.  

Julie: So my table I put that 2 cards, they will spend 5.00.  

Researcher: What about for 0 cards? 

Julie: I got 2.50. 

Researcher: How did you figure that out? 

Julie: Because when I knew that 7.50 and 9 goes by 2.50.  

Regardless of if, their rate of change or y-intercept was correct, all participants were asked 

verbally to state the value of the rate of change and the y-intercept. Based on the value that they 
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shared, all four of these participants that used procedural approaches could substitute their values 

for the rate of change and y-intercept into an equation in slope-intercept form. 

 Proficient.  

In this study, none of the six participants correctly found the y-intercept for both Task 1 

and Task 2. Whichever procedural approach participants used in Task 1, they used the same 

approach in Task 2. However, when applying the procedural approach, participants struggled to 

attend to precision and use the procedure accurately across both tasks. Participants’ errors in 

their work show the potential challenges of relying on procedural approaches to find the y-

intercept. Participants struggled to recall and apply the steps of a procedure to find the y-

intercept. In addition, participants made errors when substituting and when performing 

mathematical calculations. A limited understanding of the y-intercept can be problematic for 

students as they try to problem-solve with different representations of linear functions. With a 

deeper conceptual understanding, students can approach tasks using any representation and 

justify their solution based on their knowledge. When students build their conceptual 

understanding, they possess the logic and reasoning as to why various procedures can help to 

solve the task. However, with just a procedural understanding, students only know how to apply 

a procedure to a problem that looks a specific way. 

Conceptual Understanding 

 Across participants and tasks, there was little evidence that participants used a conceptual 

understanding to write a linear function from a graph or a table of values.  

Rate of Change 

 Throughout all six mathematical task interviews, there was no sign of participants using 

an approach that would indicate a conceptual understanding of the rate of change. For instance, 
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utilizing a covariation approach to find the rate of change would suggest that students have 

developed a conceptual understanding. Within the covariation approach, students identify that 

there is a relationship between two variables, which change together simultaneously. When using 

the covariation approach, students develop a global rule that shows how both variables change 

and how this rule applies to any coordinate pair on the linear function. However, participants 

within the current study did not show any instances of utilizing a covariation approach in either 

mathematical task.  

In Task 2, participants had the opportunity to demonstrate a conceptual understanding of 

the rate of change through verbally explaining the meaning of the rate of change. Participants 

were encouraged to relate the rate of change back to the real-world problem. However, five of 

the six participants struggled to explain the rate of change. If students used a covariation 

approach, they might have mentioned the relationship between the amount spent, in dollars, it 

took Tanya to make any number of cards. In their attempt to explain the rate of change, only one 

participant referred to the relationship between the money Tanya spent for each card that she 

made. Within this study, it is unclear whether participants understood that a relationship existed 

between the quantities that comprised the rate of change. Because of their limited conceptual 

understanding, it might be difficult for students to apply their knowledge to make connections 

and solve real-world problems that involve linear functions outside of their mathematics classes.  

Y-Intercept 

Although participants recalled appropriate procedural approaches to find the y-intercept 

from both a graph and a table of values, their reliance on procedures may have limited their 

conceptual understanding of the y-intercept. In Task 2, participants were asked to describe the 

meaning of the y-intercept in relation to the context of the real-world problem. An accurate 
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response about the meaning of the y-intercept would describe in some way that Tanya spent 

$4.50 on supplies to make greeting cards. Although Julie found that the y-intercept was $2.50 

instead of $4.50, she was the closest out of the participants when describing the meaning of the 

y-intercept. Julie explained, “The 0 is in the left column. The number of cards. So, she spends 

$2.50 for 0 cards.” The other participants shared incorrect responses, which included 

explanations about the total amount of money that Tanya spent or the amount of cards she had 

left. Based on their responses, participants did not demonstrate a conceptual understanding of the 

y-intercept, and they had a difficult time viewing the y-intercept as its own entity. Participants 

shared that the y-intercept was in some way related to the rate of change. One potential reason 

participants struggled to explain the y-intercept in terms of the context of a real-world problem 

was because of their dependence on procedural approaches and algebraic equations. Because 

participants followed a series of arithmetic steps to solve for the y-intercept, their work lacked 

any connection to the variables in the problem and their relationship to each other. As a result, 

participants found a numerical value that meant little to them in terms of the context of the 

problem.  

Discussion 

 By conducting a mathematical task interview, students with LD were given the 

opportunity to share their understanding and the manner in which they approached tasks on 

linear functions that were represented in different ways. Because research on students with LD in 

mathematics, particularly in high school, is limited (Gersten et al., 2009; Watt et al., 2016), little 

was known about how they think about linear functions. To better support students with LD in 

mathematics, teachers may wish to recognize, honor, and integrate students’ knowledge and 

misconceptions within their daily instruction. Not only do the findings from this study share the 
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content knowledge of six students with LD on algebraic concepts, but also the findings 

contribute to the literature on students with LD who identify as Black or Latinx. In terms of 

higher-level mathematics courses and content such as algebra, the voices of these students with 

LD have too often been left out of the literature (Watt et al., 2016).  

 Overwhelmingly, participants in this study used procedural approaches to find the rate of 

change and y-intercept of a linear function in both a graphical representation and a table of 

values. Utilizing a procedural approach is a valid method that students can use to write a linear 

function. Based on the nature of procedural approaches, students are often taught and encouraged 

to memorize the steps of a procedure in a particular context. While students may successfully 

apply that procedure immediately after it has been taught, they may find it difficult to know 

when and how to apply that same procedure in the future or in different contexts (Gersten et al., 

2009; Lambert, 2018). In their work, Adu-Gyamfi and Bosse (2014) highlighted that students 

often select their approach to solve problems with linear functions based on the task, and they 

found that students shared common, uncommon, and irregular rationales when explaining the 

approach they took to solve. Because linear functions can be represented in multiple ways, 

students may find it difficult to identify and apply an appropriate procedure for each of these 

different representations. The results of this study suggest that these challenges may also occur 

for students with LD who use a procedural approach. 

When teaching linear functions, teachers may want to consider the ways in which 

teaching procedures in isolation can hinder students’ problem-solving skills. Instead, teachers 

can encourage students to make connections between procedures and larger concepts so that 

students can apply procedures in tasks presented in a variety of ways. For example, in their work, 

Brenner et al. (1997) found that students who received instruction that incorporated multiple 
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representations were more successful when applying their problem representation skills to new 

problems than students who did not receive this instruction. These students were more likely to 

use tables, diagrams, or equations to represent functions compared to students who did not 

receive the same curriculum. There is a need to extend Brenner et al.’s (1997) research to 

students with LD. In particular, studies on standards-based mathematics instruction that 

encourages the use of multiple representations and includes students with LD is imperative. 

When studying instruction, research can measure the performance of students with LD 

quantitatively. However, research should also qualitatively explore how students with LD 

perceive this type of instruction and the role this instruction plays in the development of their 

understanding of the mathematical content. Results from this research can inform instruction and 

curriculum design so that both general education and special education teachers can utilize these 

approaches to support students with LD in the development of their conceptual understanding. 

Teaching students to rely on procedures may restrict students in their effort to justify their 

work and check their solution. In his work, Knuth (2000) found that students tend to rely on 

algebraic equations when solving problems with linear functions. Students may even disregard 

other representations that are more efficient to use. A reliance on certain procedural approaches 

and representations may lead students to make mistakes in either following the steps of a 

procedure or in their calculations. In the current study, several participants made errors when 

following the steps of the slope formula and using substitution with algebraic equations to find 

the y-intercept. In addition, participants within the present study made several calculation errors, 

even though they were permitted to use a calculator. 

Because of the reliance on procedures, students may not acknowledge that they can 

transition between representations to justify their work or check their answer. For instance, only 
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two participants that used procedural approaches in this study found the correct y-intercept for 

Task 1. Because participants were given a graphical representation in Task 1, they could have 

checked their work by graphing the y-intercept that they found. One participant in the current 

study found that the y-intercept in Task 1 was -44. If she attempted to graph a y-intercept of -44, 

she could have visually seen that this y-intercept would not fit the linear function. If this 

participant had gone back to the graph, she could have determined that her value for the y-

intercept was incorrect. To encourage students to check their work and justify their solution, 

teachers may want to consider the ways in which they can teach students multiple procedures, 

show how procedures and concepts relate, and make connections between representations. 

Furthermore, teachers can create assignments that invite students to use at least two different 

representations to solve. By doing this, teachers are encouraging students to make connections 

between representations, but also giving students the choice of which two representations they 

want to utilize. To support students with LD in mathematics, further research is needed on the 

ways that students with LD apply procedures when problem solving. How accurate are students 

with LD in using the procedure to solve? What errors might they make? How do students with 

LD use their knowledge and understanding of the concept to check their work? In what ways do 

they justify their solutions? Interview studies that gather data on individual student thinking are 

essential so that mathematics education researchers and educators honor the voices, experiences, 

and needs of students with LD in mathematics. 

Reliance on procedural approaches may exclude some students from accessing and 

understanding the content. When teaching procedural approaches to find the rate of change, 

teachers can utilize the slope formula, a pattern approach, or a triangle approach on a graphical 

representation, among other methods (Ellis, 2009; Zahner, 2015). Due to factors such as time 
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constraints or previous experience, teachers may rely on teaching one method to find the rate of 

change over the others. However, all students learn differently, have different learning 

preferences, and varying learning needs. As a result, teaching and relying on one method to find 

the rate of change might exclude some students from learning the procedural method and 

accessing instruction. Because not all students learn the same, six high school students with LD 

that were interviewed about their mathematics instruction shared that they wanted their 

mathematics co-teachers to teach them multiple ways to solve the same problem, and they 

wanted their teachers to give them the opportunity to choose and apply whichever method 

worked best for them (Neill, 2021a). By only teaching one method to solve a mathematics 

problem, students with LD felt that their teachers were limiting their understanding (Neill, 

2021a). To promote greater access and meet the learning needs of a diverse group of students, 

teachers may want to incorporate multiple methods to find the rate of change and y-intercept 

within their instruction. By doing so, teachers can make connections between differing 

procedural approaches, which might help students develop a more holistic and conceptual 

understanding of linear functions. For instance, teachers can encourage students to question why 

different procedures work and how they relate to each other. Additionally, the results of the 

current study suggest that the conceptual understanding of students with LD still needs to be 

further developed. To support students with LD, teachers can incorporate mathematical methods 

such as a covariation approach when teaching the rate of change (Ayalon et al., 2015). Another 

way teachers can support a conceptual development is by creating opportunities for students with 

LD to tie their knowledge of procedures to conceptual understanding so that students understand 

why procedures work. 
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In the present study, there were few, if any instances, in which participants demonstrated 

a conceptual understanding of linear functions. Because only mathematical task interviews were 

utilized in this study, it is unknown whether participants’ teachers incorporated instructional 

practices and methods that aimed to develop students’ conceptual understanding. Participants 

may have relied on procedural approaches because they felt more comfortable following a series 

of concrete steps. In a study of high school students with LD in mathematics, participants wanted 

their teachers to break down new mathematical content into steps and provide guided practice 

and repeated exposure (Neill, 2021a). The instructional preferences of these students with LD 

closely align with explicit instruction. During explicit instruction, teachers model or demonstrate 

how to solve a new mathematical concept and in doing so, break down that concept into series of 

steps (Doabler et al., 2012; Weibe Berry & Namsook, 2008) in an attempt to reduce the cognitive 

load for students (Archer & Hughes, 2011). When using this instructional practice, most 

mathematical concepts are taught to students as procedural approaches. Explicit instruction has 

been proven as an effective instructional practice for students with LD (Gersten et al., 2009; 

Graham & Harris, 2009; Hattie, 2009; Kroesbergen & Van Luit, 2003; Mastropieri et al., 1996; 

Swanson, 2001; Vaughn et al., 2000). Additionally, the Council for Exceptional Children and the 

Collaboration for Effective Educator, Development, Accountability, and Reform (CEEDAR; 

McLeskey et al., 2017) has identified it as a “High Leverage Practice” for students with 

disabilities. However, few studies have explored the use of explicit instruction when learning and 

applying procedures for more complex algebraic concepts such as linear functions (Gersten et 

al., 2009). Instead, many of the studies on explicit instruction have a narrow focus on a 

mathematical skill such as solving one-step addition and subtraction problems (Gersten et al., 

2009). The current study sought to extend the research in this field by exploring students with 
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LD understanding of linear functions. Although participants could identify an appropriate 

procedure when working with linear functions, they struggled to do so accurately and 

consistently. Some participants in the current study could not completely apply the steps of 

procedures, and others made arithmetic errors leading them to incorrect solutions. Because 

qualitative research on students with LD is limited (Lambert & Tan, 2017), there is a need to 

increase the amount of research on students with LD that focuses on individual student thinking 

when applying procedures and exploring their conceptual understanding. More research in this 

field can help to identify students’ strengths and weaknesses in utilizing procedural approaches. 

Findings from this research can help to inform instruction and the ways in which teachers may be 

able to make connections between procedural and conceptual knowledge so that teachers can 

meet students’ needs and learning preferences. 

Limitations and Implications 

The purpose of this study was to explore how students with LD think about linear 

functions and the ways in which their understanding aligns or differs from the existing literature 

on students without disability labels. The results must be interpreted with caution, as the number 

of participants is limited. These qualitative findings cannot be generalized beyond these 

participants. However, findings could be transferred to other contexts that are similar. During the 

time that this study was conducted, the pandemic caused by COVID-19 forced school closures 

throughout the United States. As a result, participants received remote instruction for 

approximately three months of the 2019-2020 school year. Because the interviews were 

conducted in the summer of 2020, this experience may have influenced participants’ 

understanding of the content and their overall disposition towards mathematics. Additionally, 

rather than being conducted in person, as previously planned, all interviews were conducted 
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remotely through Zoom and PearDeak, a Google Slides Add-On. PearDeck allowed participants 

to complete the tasks within this interview on any electronic device. This platform may have also 

influenced participation, as students may have been more accustomed to completing their 

mathematics work on paper. 

Although the design of this study has several limitations, the data gathered through the 

use of mathematical task interviews highlights the value of giving voice to students with LD. 

Throughout their mathematical task interviews, participants shared their thinking while solving 

mathematical tasks. The researcher gathered detailed information on participants’ understanding 

of mathematical content, in particular how they approached the mathematical task and why. In 

addition to seeing their work, a mathematical task interview allows the interviewer to ask 

questions in the moment. After giving a mathematical task, teachers can only view the work 

students wrote on paper and their final answer. While teachers can follow students’ work and 

measure the accuracy of the solution, teachers may not gain a deeper sense of students’ 

understanding, especially if little work is written or the work is inaccurate or irrelevant. As such, 

mathematical task interviews are a valid and useful method of assessment and source of data that 

can be used to inform instruction. Teachers may want to consider incorporating mathematical 

task interviews within their instruction to learn more about students’ thinking and learning. 

Results from mathematical task interviews can be used to identify additional areas of support for 

students. Furthermore, data gained from mathematical task interviews can be used to design 

instruction that better meets students’ needs and write IEP goals for students with LD.  

Further research is needed on instructional practices that seek to develop students with 

LD conceptual understanding of linear functions. In the current study, participants approached 

tasks on linear functions with a procedural understanding. Participants’ procedural understanding 
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may be attributed to their history of mathematics instruction. For instance, participants’ reliance 

on procedures may be due to teachers spending more time teaching approaches such as the slope 

formula rather than a manifestation of their disability. Furthermore, in this study, participants’ 

knowledge of linear functions, use of procedural approaches, and reliance on algebraic equations 

did not differ drastically from existing research and literature on students without disability 

labels. As such, additional research is needed on how teachers incorporate instruction that 

encourages students with LD to develop a deeper understanding of linear functions, such as 

utilizing the covariation approach to find the rate of change. Additionally, research on instruction 

that urges students with LD to make connections and transition between representations of linear 

functions is needed. Research in this area can help teachers plan and execute lessons that 

incorporate instructional practices that develop conceptual understanding while simultaneously 

addressing the strengths and misconceptions of students with LD. By considering students with 

LD thinking about linear functions, teachers can better support students with LD in mathematics.  
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CHAPTER IV 

TEACHING RATE OF CHANGE TO STUDENTS WITH LD RESEARCH BRIEF 
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Linear functions is a concept that is typically introduced in middle school, and it 

continues to appear throughout higher levels of mathematics. To succeed in higher levels of 

mathematics, students need to build a strong foundational understanding of linear functions 

(Capraro & Joffrion, 2006; Dubinsky, 1993). However, students with and without disability 

labels may not develop a conceptual understanding of linear functions because of the level of 

abstract thinking that it entails (Brenner et al., 1997; Kieran, 1992). Thus, teachers play an 

important role in deepening students’ knowledge of linear functions (Capraro & Joffrion, 2006; 

Zahner, 2015). Both real-world examples and multiple representations of the same linear 

function can assist students in their attempt to understand and make connections between their 

experiences and mathematical representations (Brenner et al., 1997). However, real-world tasks 

and tasks that incorporate multiple representations must be planned and implemented 

strategically to ensure that students make appropriate connections.  

Research is limited on the perceptions that students with a learning disability (LD) have 

about their mathematics instruction and their understanding of mathematics content, in 

particular, algebraic concepts. To meet their needs and learning preferences, it is essential to 

understand how students with LD prefer to be taught in mathematics. In a study of six high 

school students with LD, students favored explicit instruction with multiple opportunities for 

guided practice and repeated exposure (Neill, 2021a). Students described that they preferred 

when their teachers showed them multiple ways to solve the same problem and provided them 

with opportunities for group work. During group work, students wanted to share their 

understanding with their peers and receive feedback and small group support from their teachers 

(Neill, 2021a). Additionally, students with LD felt that their mathematics instruction was rushed 

(Neill, 2021a). 
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In addition to exploring their instructional preferences, there is a need to know the ways 

in which students with LD approach tasks on linear functions. Six high school students with LD 

participated in a mathematical task interview study in which they completed a series of tasks on 

linear functions while sharing their thinking with the interviewer (Neill, 2021b). During their 

interview, students demonstrated a procedural understanding of linear functions. Students relied 

on procedures to find the rate of change and y-intercept. While five of the six students recalled 

an appropriate procedure to utilize, their attempts to accurately and consistently apply procedures 

when solving varied (Neill, 2021b). Teaching rate of change to students with LD should include 

evenly paced, multiply represented instruction that incorporates checks for understanding, 

opportunities for feedback, and inclusion of group work. Furthermore, instruction on the rate of 

change should shift from focusing on procedures to a conceptual understanding by encouraging 

the use of multiple representations, incorporating real-world problems, and focusing on the 

relationship between quantities. The purpose of this research brief is to address how students 

with and without disability labels approach tasks on linear functions, particularly finding the rate 

of change, and how instruction can be adjusted to promote students’ development of a 

conceptual understanding. 

Defining the Rate of Change and Y-Intercept  

The rate of change and the y-intercept are two essential concepts of linear functions. Both 

the rate of change (Herbert & Pierce, 2012; Teuscher & Reys, 2010; Wilkie & Ayalon, 2018) 

and the y-intercept (Davis, 2007; Knuth, 2000) are often difficult ideas for students to understand 

conceptually. Ayalon et al. (2015) described the rate of change as a relationship between two 

variables in which a change in one variable is expressed based on a change in the other variable. 

In the early years of algebra, the rate of change may be presented to students as the slope or 
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steepness of a line. Teachers and students often use the terms slope, rate of change, and steepness 

interchangeably (Knuth, 2000; Teuscher & Reys, 2010). Most textbooks refer to the y-intercept 

as the value of the y-coordinate when its x-coordinate is zero or the value of the y-coordinate 

when the linear function crosses the y-axis on a graphical representation (Knuth, 2000).  

Common Instructional Practices Used to Teach the Rate of Change 

Before being introduced to the rate of change, students receive instruction on related 

concepts such as the constant of proportionality. Similar to the rate of change, the constant of 

proportionality can be found from a table of values, a graphical representation, and a real-world 

description. Additionally, students can write an algebraic equation to represent the constant of 

proportionality. A strong awareness of the constant of proportionality can assist students as they 

explore and make meaning of the rate of change. Although students receive repeated exposure to 

the rate of change throughout their mathematics education, they experience difficulty 

demonstrating a conceptual understanding of this concept. 

Because of the abstract nature of linear functions and various external pressures, teachers 

may spend more time focusing on the use of a procedural approach to find the rate of change of a 

linear function (Teuscher & Reys, 2010; Zahner, 2015). Procedural knowledge refers to students’ 

understanding of mathematical language, symbols, rules, and algorithms. In this case, students 

follow step-by-step procedures to solve a problem on a particular skill (Capraro & Joffrion, 

2006). Usually, students complete these procedures without understanding the reasons behind 

why the procedures work in aiding them to solve the task at hand (Capraro & Joffrion, 2006; 

Stump, 2001). Using the slope formula is one common procedural approach that students use to 

find the rate of change of a linear function (Teuscher & Reys, 2010). In this case, students select 

two ordered pairs from the linear function. Then, students use these ordered pairs to find the 
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difference between the y coordinates and the difference between the x coordinates. Another 

procedure that students tend to use is creating a right triangle between two ordered pairs on a 

graphical representation in which students find the length of each leg of the triangle by counting 

the units on the graph. Students that use the triangle procedural approach often identify that the 

rate of change of the function is a fraction, such as 
4

1
, rather than writing it as the integer of 4 

(Zahner, 2015). Students that write the rate of change as a fraction show confusion about the role 

the quantities of the numerator and the denominator play in making up the rate of change 

(Herbert & Pierce, 2012).  

Other teachers encourage students to find patterns within number tables in their effort to 

determine the rate of change (Ellis, 2009). Students who use this approach will concentrate on 

finding patterns between the x coordinates and the y coordinates separately, rather than 

identifying a coordinate pair as one entity. Similarly, the correspondence approach is an 

approach in which students develop a rule or pattern that allows students to solve for any value 

of y based on the value of x, known as the input-output method. In this case, students may 

substitute any given value of x into the linear function to solve for the value of y (Wilkie & 

Ayalon, 2018). While students have shown some level of success in using these procedures to 

find the rate of change (Ayalon et al., 2015; Wilkie & Ayalon, 2018; Zahner, 2015), instruction 

that solely emphasizes a procedural approach limits students in their attempt to understand the 

rate of change at a deeper level (Capraro & Joffrion, 2006; Herbert & Pierce, 2012; Stump, 2001; 

Teuscher & Reys, 2010).  
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How Does Instruction Influence Student Understanding? 

Across the literature, there has been an emphasis on the importance of developing a 

conceptual understanding of linear functions (Capraro & Joffrion, 2006; Ellis, 2007; Kieran, 

1992). However, because instruction often focuses on procedural approaches, many students still 

show only a procedural understanding of the rate of change (Ellis, 2009; Teuscher & Reys, 2010; 

Zahner, 2015). Due to their instruction and procedural understanding, students often struggle to 

explain the meaning of the rate of change, develop incomplete understandings, and show a 

reliance on algebraic equations. 

Difficulties Explaining the Rate of Change 

While students can find the rate of change accurately using their preferred procedure, 

students often struggle explaining the meaning of the concept. Students may describe the rate of 

change as the “rise over run” or the “up and over” (Zahner, 2015). Because some students cannot 

distinguish the difference between the terms slope, rate of change, and steepness, they use all of 

these terms in a similar manner (Teuscher & Reys, 2010). In her work, Stump (2001) found that 

pre-service teachers were surprised that their students could not describe the numerical value of 

the rate of change. Additionally, students could not explain the meaning of the rate of change in 

terms of the context of the problem. When teachers focus their instruction on encouraging 

students to find patterns in tables, students experience issues developing accurate global rules 

and explaining the relationship between the independent and dependent variables (Ellis, 2009). 

Instead, students make comments about the variables separately, such as “on the x side, it’s going 

up by ones, and on the other side, it’s going up by sevens” (Ellis, 2009, p. 485). Similarly, in a 

study of six high school students with LD, only one student could explain the meaning of the rate 

of change based on a real-world problem (Neill, 2021b). As a result of using a procedural 



www.manaraa.com

102 

 

 

 

approach, students show a lack of knowledge about the relationship between the two variables 

that make up the rate of change. Furthermore, when taught to use procedures primarily, students 

grapple with applying procedures and methods when solving, particularly when given tasks in 

different representations (Capraro & Joffrion, 2006).  

Developing Incomplete Understandings 

During their education, students develop incomplete understandings about the rate of 

change. For example, students struggle to differentiate between the terms slope, rate of change, 

and steepness (Stump, 2001). Teuscher and Reys (2010) explained that the steepness of a line 

refers to the visual perception of the graph of a linear function. However, the slope and rate of 

change of a linear function refer to the relationship between the independent and dependent 

variables. Possibly due to their limited conceptual understanding, not only do students have a 

difficult time explaining the difference between steepness, slope, and rate of change, but they 

also cannot identify the relationship among these concepts (Teuscher & Reys, 2010). To help 

support students’ development, teachers can introduce steepness using real-world examples such 

as the roof of a house or a building. Through exploring the slope of various roofs, students can 

deduce that a larger number corresponds with a steeper slope (Teuscher & Reys, 2010).  

While students are able to identify the rate of change from a given task, they often 

disregard the sign of the rate of change. In their work, Teuscher and Reys (2010) found that 

students did not acknowledge that a rate of change of 2 was different from a rate of change of -2. 

To address this misconception, teachers should emphasize that the sign of the rate of change 

provides vital information about the relationship between the independent and dependent 

variables, such as a rate of change of -2 indicates that as the independent variable increases, the 

dependent variable decreases. Because of their incomplete understanding regarding the important 
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role that the sign of the rate of change plays in a linear function, students may not be 

acknowledging the relationship between the two variables. Table 7 provides educators with 

strategies to address potential misconceptions or misunderstandings students have about the rate 

of change.  

Table 7 

Addressing Students’ Misconceptions and Misunderstandings 

Common Misconceptions and/or 

Misunderstandings 

Research-Based Interventions 

Students rely only on a procedural 

approach. 

Encourage the use of a covariation approach. Students 

can view and understand that the rate of change is two 

quantities that change together. 

Students see the x-coordinates and 

y-coordinates as separate entities.  

Include problems on speed to allow students to identify a 

relationship between the two different variables in terms 

of distance and time. 

Students view the rate of change 

only as one quantity instead of a 

relationship between two 

quantities. 

Incorporate situational problems with different variables, 

such as the speed of an elevator building.  

Students struggle to differentiate 

between steepness, slope, and rate 

of change. 

Use real-world examples, such as the roof of a house or 

mountain. Give students several examples in which they 

can deduce that a larger rate of change corresponds with 

a steeper slope.  

Students disregard the sign of the 

rate of change (positive versus 

negative). 

Show students graphical representations of a rate of 

change that is positive and negative. Emphasize the 

direction as well as the relationship between the 

independent and dependent variables.  

Students rely on one 

representation, typically an 

algebraic representation.  

Design and implement instruction that incorporates 

multiple representations, which allows students to make 

connections between representations.  

Students lack understanding about 

the Cartesian Connection.  

Encourage students to link coordinate pairs from a table 

to a graph. Draw students’ attention to the connection 

between coordinate points on a graph and a table, and 

how both of these representations connect to the 

algebraic equation of the linear function.  
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Relying on Algebraic Equations 

When it comes to working with linear functions, students prefer to use an algebraic 

representation (Knuth, 2000). Students may rely on algebraic equations because, typically, 

students are introduced to linear functions through equations in slope-intercept form (Knuth, 

2000). For example, in his study of 178 high school students, Knuth (2000) found that students 

relied on using an algebraic equation even though using a graphical representation would have 

been easier and more efficient. In fact, Knuth noted that the task in his study was created in an 

effort to compel students to use a graphical approach. Furthermore, in Knuth’s work, students 

relied on an algebraic approach so much so that they did not even acknowledge that a graphical 

representation could be used to solve the task or justify their answer. One reason students may 

disregard using a graphical approach is that they struggle in their attempt to make connections 

between ordered pairs on a graph and algebraic equations (Hart, 1981; Moschkovich et al., 

1993). When students lack the skills needed to make associations between representations, they 

show a limited understanding of linear functions. Depending on the use of only one 

representation of a linear function can be problematic for students because they will struggle to 

solve problems presented in various ways, some of which may be unfamiliar to them. As such, it 

is important that students learn to make connections between algebraic equations and graphical 

representations. With this knowledge, students can check their work and justify their solution.   

Instructional Practices to Help Students Develop a Conceptual Understanding 

Researchers have suggested that teachers should not ignore the development of 

procedural knowledge completely. Procedural and conceptual understanding are not separate 

entities; rather, both are needed for student success. As such, a hearty mix of procedural 

understanding and conceptual knowledge is necessary for students to form a more complete 
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picture of linear functions (Adu-Gyamfi & Bosse, 2014; Capraro & Joffrion, 2006; Knuth, 

2000). Conceptual understanding refers to students linking new ideas to their previous 

conceptions and building knowledge that is rich in relationships (Stump, 2001). In their work, 

Capraro and Joffrion (2006) shared that “without conceptual understanding, procedures mean 

almost nothing. Connections make mathematics meaningful, memorable, and powerful” (p. 163).  

Teaching Quantities to Develop Conceptual Understanding 

A solid conceptual understanding of a mathematical concept increases students’ problem-

solving skills, as it encourages students to approach tasks in any manner they deem fit. 

Furthermore, students can justify their solution based on their knowledge and its relationship to 

the problem. When students build their conceptual understanding, they possess the logic and 

reasoning as to why various procedures can help to solve the task. However, with just a 

procedural understanding, students may only know how to apply a procedure to a specific type of 

problem that looks a certain way. 

To support students’ development of a more conceptual understanding of the rate of 

change, teachers should allocate both time and experience for students to transition from a 

procedural conception to a structural conception. One way to do this is by encouraging students 

to focus on quantities and how those quantities relate to each other. In a study of a class of 

seventh-grade students, the teacher sought to develop students’ quantitative reasoning and 

understanding of the rate of change by incorporating examples on speed and gear ratios (Ellis, 

2009). Rather than viewing the variables as separate entities, students demonstrated their 

understanding that a relationship between the two variables existed. For example, students 

identified a relationship between the variables in terms of the distance, in feet, and the time, in 

seconds. More importantly, students were better able to extend their understanding and make 
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sense of problems that differed from examples previously given. For instance, students were able 

to reason and develop accurate global rules about linear functions in slope-intercept (y = mx + b) 

form. However, students in another class that focused only on patterns in a table could not justify 

examples in slope-intercept form. Rather, students in this class shared that equations in the form 

of y = mx + b were not linear because the pattern that they developed did not fit all of the data 

points on the given table (Ellis, 2009).  

The Covariation Approach to Develop Conceptual Understanding 

Teachers can also introduce the rate of change through a covariation approach. A 

covariation approach “involves analyzing, manipulating, and comprehending the relationship 

between changing quantities” (Ayalon et al., 2015, p. 323). The covariation approach highlights 

that the rate of change is not one quantity or the other, but rather a new entity that is comprised 

of changes within both variables. Teachers can incorporate situational problems with different 

variables that students can manipulate and relate to, such as the speed of an elevator in a 

building. Students can explore the relationship between the speed, in seconds, it takes an elevator 

to get to various floors of a building (Ayalon et al., 2015). Using the covariation approach, 

students develop a global rule that shows how both variables change and how this rule applies to 

any floor in the building. Verbal explanations about the rate of change by students using this 

approach would include descriptions about both variables, such as the rate of the elevator is three 

floors per second (Ayalon et al., 2015). While studying the use of the correspondence and 

covariation approaches, in their work, Ayalon et al. (2015) found that students tend to rely on the 

correspondence approach. However, students that used a covariation approach were more 

successful in developing accurate rules to represent functional relationships and completing their 

given tasks. These results may be because a covariation approach focuses on the relationship 
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between the quantities, whereas the correspondence approach is more procedural. Rather than 

introducing the rate of change as a calculation to determine a single value, teachers may want to 

introduce and emphasize that the rate of change is a relationship between the changes in two 

quantities (Herbert & Pierce, 2012).  

Teaching Students to Make Connections between Representations 

Linear functions can be represented in multiple ways. A linear function can be written as 

an equation in slope-intercept form (y = mx + b) or standard form (ax + by = c), and it can be 

seen in the form of a table, graph, or a real-world description. With a strong conceptual 

understanding, students can recognize that the same linear function can be represented in these 

various ways, and students can move back and forth between these representations. While 

studying classroom instruction designed to emphasize and incorporate multiple representations, 

Brenner et al. (1997) found that students who received this type of instruction were more 

successful when applying their problem representation skills to new problems. They were more 

likely to use tables, diagrams, or equations to represent functions than students who did not 

receive the same curriculum. Instead, students that did not receive instruction on multiple 

representations of linear functions relied on rote memorization of symbol manipulation (Brenner 

et al., 1997). By designing a unit that emphasizes problem representation skills, teachers give 

students the opportunity to make connections between multiple representations and deepen their 

understanding. 

A conceptual understanding of linear functions is one that is rich in relationships. 

Students cannot understand the various representations of linear functions in isolation (Wilkie & 

Ayalon, 2018). Instead, students should see and understand how each representation is related to 
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one another. The Cartesian Connection plays a role in helping students to make connections 

between representations. Wilkie and Ayalon (2018) shared that  

The Cartesian Connection is considered a critical translation for students to learn to make 

between algebraic equations and their graphs. It is also foundational for relating the rate 

of change in a linear equation (described by the coefficient of x) with the gradient (slope) 

of its graph. (p. 504) 

Often, students are exposed to the Cartesian Connection early in their algebraic educational 

experience. Because teachers are under the impression that the concept was previously taught, 

the topic is rarely revisited (Knuth, 2000). Additionally, it is often assumed that not only do 

students comprehend the concept, but they also retain knowledge over time (Knuth, 2000; Knuth 

et al., 2005). However, even students enrolled in higher-level math classes such as Advanced 

Placement (AP) calculus, have shown difficulty in accurately recalling information about the rate 

of change that was taught in years prior (Teuscher & Reys, 2010). As such, it is imperative that 

teachers check students’ understanding of the Cartesian Connection and revisit the concept, if 

necessary. When discussing the rate of change, teachers can emphasize the Cartesian Connection 

and highlight to students that any point on the graphical representation of the linear function is a 

solution to the algebraic equation (Knuth, 2000). Paying particular attention to a graphical 

representation during instruction is essential because students often struggle to make connections 

between an equation and a graph (Wilkie & Ayalon, 2018). Because students tend to feel more 

comfortable with a table representation than a graph (Wilkie & Ayalon, 2018), teachers can draw 

students’ attention to the connection between ordered pairs on a graph, a table, and an algebraic 

equation. More importantly, encouraging students to make connections between representations 
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will help students take and use knowledge developed in one context and apply it to other 

contexts (Wilkie & Ayalon, 2018).  

Strategically Incorporating Real-World Problems 

Incorporating real-world problems can help students establish their conceptual 

understanding of the rate of change. It can be difficult for students to “see” that the slope of the 

line is its rate of change because it is a relationship between two variables (Lobato et al., 2003; 

Noble et al., 2004). By including real-world problems, students can use their everyday 

experiences in an attempt to better understand how the independent and dependent variables 

change together to create the rate of change (Leinhardt et al., 1990). For example, students can 

find success and enhance their performance on tasks with linear functions when time-based 

graphs are included within instruction (Leinhardt et al., 1990). In addition, real-world 

representations such as roofs, mountains, and wheelchair ramps can help students understand 

steepness, compare different values of steepness, and differentiate between steepness and slope 

(Stump, 2001). However, teachers should not assume that just because they include real-world 

examples within their instruction that students will automatically understand the rate of change 

(Stump, 2001). Real-world examples must be meaningful to students and allow students to draw 

on their prior knowledge. Additionally, while working with real-world problems, students may 

make incorrect connections or attempt to make connections where they do not exist based on 

their prior experiences (Davis, 2007). With appropriate instruction, real-world problems can be 

used as a tool for students to comprehend the relationship between the changes in two variables.  

Supporting Students with Learning Disabilities 

Federal legislation, such as the Individuals with Disabilities Education Act (IDEA; 2004) 

and No Child Left Behind (NCLB; 2002), require that schools educate students with LD with 
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their peers without disability labels and provide students with LD access to the general education 

curriculum. As a result, there has been an increase in the number of students with LD educated in 

a general education setting for 80% or more of their school day (Cortiella & Horowitz, 2014). 

Often, schools in the United States place students with LD in an Integrated Co-Taught (ICT) 

class in which a subject-area or grade-level teacher and a special education teacher work together 

as co-teachers to provide instruction to general and special education students. Both co-teachers 

are responsible for implementing the standards-based curriculum to all students, including 

students with LD.  

In 2014, the National Council of Teachers of Mathematics (NCTM) published the 

Principles to Action: Ensuring Mathematical Success for All calling for teachers to encourage 

students to be an active part of the learning process and construct their own knowledge. The 

notion was that through discussion, exploration, and inquiry, students would develop a deeper 

conceptual understanding. However, inquiry-based teaching practices often conflict with many 

of the research-based practices identified as beneficial for students with LD. Because these 

pedagogies differ, questions, and possibly tensions may arise between co-teachers as they 

attempt to navigate the best way to ensure that students with LD have the appropriate access to 

the standards-based curriculum. Rather than teachers utilizing one instructional practice or 

another, co-teachers can work together to incorporate various instructional practices to support 

all students. For instance, while implementing the Five Practices for Orchestrating Productive 

Mathematics Discourse (Stein et al., 2015) teachers can include instances of explicit instruction, 

which has been proven as useful for students with LD (Gersten et al., 2009; Graham & Harris, 

2009; Kroesbergen & Van Luit, 2003; Mastropieri et al., 1996; Swanson, 2001; Vaughn et al., 

2000). The following section will highlight the ways in which teachers can use explicit 
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instruction, student verbalizations, and heuristics to help students develop their understanding of 

the rate of change. While these practices have been found advantageous for students with LD in 

mathematics, teachers can use other instructional practices to assist students with LD and are not 

limited to only these three.  

Explicit Instruction 

 Incorporating instances of explicit instruction can support students with LD as they 

develop their understanding of the rate of change. Within explicit instruction, teachers model and 

break down a mathematical concept into steps (Doabler et al., 2012; Weibe Berry & Namsook, 

2008). By breaking down concepts into discrete parts, teachers help reduce the cognitive load 

placed on students based on their current skills (Archer & Hughes, 2011). Following the 

completion of the demonstration, teachers lead students in guided practice. During this time, 

teachers ask questions and elicit participation from students while monitoring their responses and 

providing feedback (Doabler & Fien, 2013; Hughes et al., 2017). Teachers can use students’ 

responses to adjust instruction in an effort to meet the needs of students. In addition to being an 

effective research based practice for students with LD (Graham & Harris, 2009; Kroesbergen & 

Van Luit, 2003; Mastropieri et al., 1996; Swanson, 2001; Vaughn et al., 2000), high school 

students with LD shared that they preferred when their mathematics teachers modeled and broke 

down content into steps (Neill, 2021a).  

By using explicit instruction, teachers can demonstrate to students that the sign of the rate 

of change is meaningful. More specifically, using several graphical representations can help 

teachers show students the difference between a positive rate of change and a negative rate of 

change. Figure 3 shows four different linear functions, three of which have a positive rate of 

change and one which has a negative rate of change.  
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Figure 3 

Graphical Representation of Positive versus Negative Rate of Change 

Linear Functions 
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Teachers can present the four graphs shown in Figure 3 to students. Then, teachers invite 

students to share any similarities or differences that they notice between the graphs. Through 
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explicit instruction, teachers emphasize to students that Function B looks different from 

Functions A, C, and D. While Functions A, C, and D have a positive rate of change, Function B 

has a negative rate of change. Through explicit instruction, teachers call attention to visual cues 

on graphical representations that can assist students in understanding the importance of the sign 

of the rate of change.  

During explicit instruction, teachers can use a think-a-loud to model for students how to 

interpret the relationship between the variables using a description. For instance, teachers can 

show students a graphical representation of the linear function y = 50x + 100, where x is the 

number of hours worked, and y is the total amount of money earned. Using this example, 

teachers can model how to read the graph and explain that as the number of hours worked 

increases, the total amount of money earned also increases. Through demonstrations and guided 

practice, students develop the skills to explain the relationship between the variables. When 

faced with a graphical representation in the future, students use their instruction on interpreting 

the relationship between the variables to make a connection between their description and the 

value of the rate of change. Explicit instruction does not need to span for an entire class period. 

Rather, explicit instruction can occur at the start of the lesson to provide all students access to the 

aligned task, while students are working in small groups, or at the end of the lesson when 

teachers are making connections between students’ work.  

Explicit instruction also allows for repeated exposure to a concept. Repeated exposure 

provides students with and without disability labels the chance to see the mathematical concept 

multiple times and gives them several opportunities to develop and practice their skills. High 

school students with LD shared that they wanted their mathematics teachers to show them how 

to solve a problem multiple times (Neill, 2021a). Additionally, they wanted their teachers to 
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provide them with several opportunities to practice their new skills under the guidance of their 

teachers (Neill, 2021a). Using explicit instruction and repeated exposure can help students make 

connections between multiple representations of the same linear function. During instruction, 

teachers model for students how to identify different representations of a function with the same 

rate of change. Even though a graphical representation, a table of values, and an algebraic 

equation may look different, when graphed, all three representations would look the same. 

Furthermore, teachers take the time to demonstrate to students this process and post the various 

representations side-by-side for students to view and compare. To allow for repeated exposure 

and practice, teachers give students open-ended tasks that encourage them to use more than one 

representation to solve the task and justify their solution. 

While explicit instruction and repeated exposure are important practices that support 

students with LD, both practices should not be the sole source of instruction for students with LD 

(Geary et al., 2008). Students with LD are capable of constructing their own knowledge based on 

their previous understandings. As such, students with LD deserve access to a standards-based 

curriculum, which includes participating in inquiry-based instruction (Lambert, 2018). Teachers 

can use explicit instruction to support students’ understanding at various points of the lesson 

while still encouraging them to make meaning of the larger task through inquiry and discussion 

with their peers.  

Student Verbalizations 

Student verbalizations is another instructional practice that has proven to be effective for 

students with LD in mathematics (Gersten et al., 2009). Student verbalizations encourage 

students to explain their thinking process aloud. By prompting students to share their thinking, 

teachers can scaffold instruction, evaluate students’ problem-solving strategies, and recommend 
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that students discuss their mathematical approaches with their peers or their teachers (Gersten et 

al., 2009). Teachers can prompt students to share their thinking with a peer, such as a think-pair-

share or in a small group. Additionally, teachers can give students with LD self-questioning 

scripts while they are working on the given task. These self-questioning scripts can include 

general questions such as “Have I read and understood the task?” and “Are there any words 

whose meaning I have to ask?” (Hutchinson, 1993). Because the rate of change is a more abstract 

algebraic concept, self-questioning scripts can also include questions that are specific to the 

mathematical concept and/or the task that students are working on that day. In regard to the rate 

of change, script questions may include, but are not limited to the following: (a) What 

representation(s) can I use to solve this task?, (b) What are the variables being given/shown?, (c) 

Is the rate of change positive or negative? How do I know?, and (d) How are the variables 

changing? What is their relationship to each other? While self-questioning scripts are an 

effective strategy for students with LD, teachers may want to show students how to use self-

questioning scripts. Simply giving students a self-questioning script will not be effective. 

Without modeling or demonstrating how to use the script, students may become more confused, 

frustrated, and overwhelmed. Teachers can use explicit instruction to model for students how to 

use self-questioning scripts. After practicing a few times with their teachers, students will begin 

to feel comfortable using the self-questioning scripts independently. Then, students can be given 

a self-questioning script to assist them during an inquiry-based task.  

Heuristics 

Teachers can also use heuristics to support students with LD in developing their 

understanding of the rate of change. Similar to self-questioning scripts, a heuristic is a tool that 

acts as a self-regulation strategy for students in their effort to solve a mathematical task (Maccini 
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& Hughes, 2000). When using a heuristic, students follow a series of steps to help them identify 

key information and develop a course of action to complete the mathematics task (Watt et al., 

2016). Including heuristics within mathematics instruction gives students with LD a tool to 

organize, process information, and self-regulate their work (Watt et al., 2016). One heuristic that 

students can use is the problem-solving guide, which includes the following four steps: (1) read it 

and make it simple, (2) get a strategy, (3) work the problem, and (4) check it (Woodward et al., 

2001). Within this guide, teachers can include several questions and prompts for students to 

follow and provide suggestions for problem-solving strategies such as drawing it, making a table, 

looking for a pattern, or working backward (Woodward et al., 2001). While the four steps should 

remain consistent so that students can apply this problem-solving guide to a variety of questions, 

the suggestions for problem-solving strategies can be tailored to the given task or concept. In 

regard to the rate of change, strategies and prompts can include, but are not limited to, sketch a 

graph, create a table, describe the way that the graph looks, tell your friend how the variables are 

changing, and use two representations to prove your answer. As with the self-questioning script, 

students with LD should be explicitly taught how to use the problem-solving guide so that there 

is no confusion or frustration. Students should view self-questioning scripts as a tool to aid their 

work rather than viewing the script as more work for them to complete.  

Conclusion 

When teaching the rate of change, educators may want to consider moving from 

instruction that emphasizes the use of procedural approaches to instruction that seeks to develop 

students’ conceptual understanding. Although students receive repeated exposure to linear 

functions and the rate of change throughout their experiences in algebra, many students do not 

show a conceptual understanding of the rate of change. Because of this, students cannot explain 
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the meaning of the rate change, they struggle to differentiate between a positive and negative rate 

of change, and they tend to rely on an algebraic approach when working on tasks that involve 

linear functions. To support students, teachers can include instruction that focuses on quantities 

with real-world connections such as speed. In doing so, teachers give students the opportunity to 

better understand the rate of change as a relationship between two quantities. Furthermore, 

teachers can design instruction to highlight the connections between different representations of 

linear functions. Even though incorporating multiple representations and real-world problems 

into daily instruction can support students’ development, teachers may want to consider 

providing appropriate instruction that makes a clear connection between representations so that 

students do not make inaccurate connections or develop misconceptions. The possibility that 

these incomplete understandings and misconceptions can stay with students for years is even 

more problematic (Teuscher & Reys, 2010). With the notion that algebra and algebraic concepts 

act as a gatekeeper in mathematics (Capraro & Joffrion, 2006), it is important that teachers 

prepare students for future success in higher-level mathematics courses by helping students form 

a deep and conceptual understanding of the rate of change. 
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CHAPTER V 

CONCLUSION 
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This study was designed based on the researcher’s belief that to support students with a 

learning disability (LD) in the classroom, teachers and mathematics education researchers must 

give voice to students’ needs, preferences, and knowledge. In addition, educators must honor the 

voices of students with LD when planning curriculum and instruction. Because research on high 

school students with LD in mathematics is limited (Gersten et al., 2009; Lambert & Sugita, 

2016), it is somewhat unknown whether or not mathematics co-teachers of Integrated Co-Taught 

(ICT) classes are meeting the needs of their students. Furthermore, if little research on students 

with LD in high school mathematics exists (Lambert & Sugita, 2016; Watt et al., 2016), one 

must wonder which research co-teachers are using when making instructional decisions. While 

teachers could plan instruction based on information presented in professional development, 

teachers may want to consider that students with LD are experts in their classroom experience. 

As such, their voices should not only be included in the literature but also incorporated into daily 

classroom instruction.  

 In an effort to give voice to students with LD, qualitative methods were used in this 

study. Chapter II discusses the results of semi-structured interviews with high school students 

with LD. Interview questions sought to learn more about the instructional practices used in ICT 

mathematics classes and participants’ perceptions of those practices. Findings suggest that 

participants felt explicit instruction with guided practice was advantageous for their learning. 

While participants did not use the term explicit instruction, they referred to practices used within 

explicit instruction, such as teachers modeling and breaking down new mathematical concepts 

into clear and unambiguous steps (Archer & Hughes, 2011; Doabler et al., 2012; Weibe Berry & 

Namsook, 2008). Participants preferred when their teachers demonstrated how to solve a 

problem using a series of steps, and they wanted to practice these steps under the guidance of 
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their teacher several times before completing their work independently. Not only did participants 

like when their teachers showed them how to solve a problem or concept in multiple ways, but 

also when their teachers allowed them to use the mathematical method that worked best for 

them. Additionally, participants discussed that the pace of instruction was often too quick for 

them, and they appreciated it when teachers gave them the opportunity to work in a group with 

their peers. Based on their history of instruction in mathematics, participants may have only been 

exposed to explicit instruction, and as such, prefer it. Because little is known about students with 

LD participation in a standards-based curriculum (Lambert & Sugita, 2016), further research is 

needed on how students with LD perceive other types of instruction, such as inquiry-based 

instruction. 

In Chapter III, the researcher used a mathematical task interview, also known as a clinical 

interview in mathematics research education (Clement, 2000), to learn more about students with 

LD understanding of linear functions. Linear functions is a concept that spans across grades. 

Because linear functions is a topic that appears throughout algebra and builds the foundation for 

concepts taught in calculus (Capraro & Joffrion, 2006; Dubinsky, 1993), there is a need to know 

how students with LD think about this concept. Findings from this study suggest that participants 

demonstrated a procedural understanding in which they utilized procedural approaches such as 

the slope formula and substitution when determining the rate of change and y-intercept. While 

five of the six participants identified appropriate procedural approaches to find the rate of change 

and y-intercept, their accuracy and consistency applying procedures varied across tasks that were 

represented in different ways. Teachers may want to incorporate and encourage the use of 

multiple representations and real-world problems to support students with LD as they develop 

their conceptual understanding.  
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Chapter IV is a potential resource for teachers, both general and special education, as 

they plan instruction for students with and without disability labels on linear functions. The 

article highlights that students often possess a superficial understanding of linear functions 

because they rely on procedural approaches. However, the article explains the importance of 

encouraging students to develop a conceptual understanding of linear functions and the role that 

teachers play in planning instruction that supports a more in-depth understanding. Furthermore, 

the article provides several research-based strategies for teachers to incorporate into their 

instruction, such as real-world problems and multiple representations.   

Bridging Gaps in Research and Pedagogy 

The ways that researchers study students with LD may limit teachers’ efforts to educate 

students in the classroom appropriately. In terms of the field of mathematics education, Lambert 

and Tan (2017) argued that students with LD and their voices have been excluded from research 

because they are framed as “problematic.” The research that does exist on students with 

disabilities is mostly quantitative in nature (Gersten et al., 2009; Lambert & Tan, 2017; Watt et 

al., 2016). As a result, in regard to students with disabilities, little analysis of student thinking 

exists. Rather, students with disabilities are studied using aggregate test scores (Lambert & Tan, 

2017). Furthermore, there are stark differences between the ways in which students with and 

without disability labels are studied in mathematics. Lambert and Tan (2017) found that only 6% 

of research studies on students with disabilities were qualitative compared to 50% of research 

studies on students without disabilities. Additionally, 86% of research studies on students with 

disabilities were quantitative, whereas only 35% of research on students without disabilities were 

quantitative. In an attempt to begin to fill this very prevalent and problematic research gap, 

qualitative methods were used to honor the voices of students with LD, their preferences, and 
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their knowledge. Through interview studies, such as this one, there can be a shift in mathematics 

education research to gather and analyze the individual thinking of students with LD at rates 

similar to that of their peers without disability labels. 

Qualitative research on students with LD may be minimal because some teachers and 

mathematics education researchers exhibit a deficit view of students with LD (Lambert, 2018). 

Rather than researching, identifying, and discussing the strengths of students with LD, students 

with LD are typically referred to by the ways in which they differ from students without 

disability labels. Researchers and educators tend to focus on what students with LD cannot do 

instead of highlighting what they can do. For instance, mathematics reform over the last thirty 

years has called for students to be active participants in their construction of mathematical 

knowledge through inquiry and discussion (Woodward & Montague, 2002). However, special 

educators typically question constructivism, the paradigm they equate with inquiry-based or 

discovery learning (Lambert & Sugita, 2016), because they believe that students with LD need 

explicit guidance to develop new mathematical knowledge (Jitendra, 2013). Furthermore, there is 

an underlying belief that pedagogical approaches that utilize discovery learning would lead “to 

even greater failure for students with learning disabilities” (Woodward & Montague, 2002, p. 

92). Based on this belief, teachers are assuming, either consciously or unconsciously, that 

students with LD cannot use their prior knowledge to make connections and think about 

mathematical problems in an effort to build new mathematical knowledge. As a result, teachers 

may be limiting the mathematical potential of students with LD (Lambert, 2018). In her work, 

Lambert (2018) argued, “Considering the cognitive strengths of those with LD, it seems illogical 

to frame these learners as incapable of conceptual thinking” (p. 3). Rather, Lambert 
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recommended that teachers should engage students with LD in standards-based instruction and 

provide them with the appropriate structure and support. 

Educators may assume that it might be too cognitively challenging for students with LD 

to construct their own knowledge. As a result, teachers tend to rely on explicit instruction 

(Lambert, 2018). However, Lambert (2018) noted that students with LD develop new 

mathematical knowledge based on their previous understanding, and, as such, they deserve to 

have access to standards-based instruction. Not only did Lambert assert that students with LD 

should participate in inquiry-based instruction, but also the National Mathematics Advisory 

Panel (Geary et al., 2008) shared that explicit instruction should not be the only method used to 

teach students with LD in mathematics. The findings from this study suggest that students with 

LD do not drastically differ from that of students without disability labels in their understanding 

of linear functions. Thus, teachers should not restrict students’ understanding by utilizing only 

explicit instruction. Instead, teachers should allow students with LD to reason, problem-solve, 

and complete complex mathematical tasks on algebraic concepts. 

Findings from this study suggest that students with LD can articulate their learning needs, 

preferences, and mathematical content knowledge. In regard to instruction, participants 

explained that all students learn differently and that teachers should consider this when planning 

instruction and executing a lesson. Even though participants in this study preferred explicit 

instruction, they also liked it when their teachers showed them how to solve a problem in 

multiple ways. Additionally, participants found it advantageous when their teachers allowed 

them to solve tasks using whichever method they preferred. This notion of encouraging students 

to solve tasks using methods, skills, and meaningful strategies aligns with standards-based 

mathematics instruction. Researchers and educators can use this knowledge to begin to bridge 
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the gap between explicit instruction and inquiry-based instruction. Instead of utilizing only 

explicit instruction, teachers can design inquiry-based instruction that incorporates instances of 

explicit instruction to support students’ understanding at various points of the lesson. However, 

teachers should encourage students to make meaning of the larger task on their own or in a small 

group of their peers. In addition, teachers can connect procedures to problems that require a 

deeper conceptual understanding so that students build the logic and rationale as to why 

procedures are valid (Capraro & Joffrion, 2006). Mathematics co-teachers may wish to plan their 

inquiry-based instruction in accordance with students’ knowledge and strengths while 

incorporating instances of explicit instruction to meet students’ needs and preferences. 

By listening to students when they explain their unique understanding, researchers and 

teachers can develop instructional strategies based on students’ strengths and knowledge. For 

instance, results from this study suggest that teachers can utilize multiple representations, in 

particular graphical representations and a table of values, to help students with LD develop a 

conceptual understanding of linear functions. As such, teachers can make connections between 

representations to foster a deeper understanding of the rate of change, y-intercept, and algebraic 

equations in terms of the context of a real-world problem. With that said, not all real-world 

problems are meaningful to students. For instance, in Task 2, participants struggled when 

explaining the relationship between the number of greeting cards that Tanya made and the total 

amount she spent. Connecting their prior knowledge to make sense of the rate of change and y-

intercept in Task 2 may have been problematic for participants because spending money to make 

greeting cards may not have been relatable to students. 

Overall, students with LD have the knowledge, both real-world and mathematical, and 

can build on their knowledge to learn new mathematics concepts. To learn more about students 
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with LD mathematical thinking, knowledge, and understanding of mathematical concepts, 

research could be conducted on other mathematical topics. Possible research topics could include 

ratios and proportions, geometric transformations, probability, and statistics. In addition, future 

research and instruction should focus on students with LD access to the standards-based 

curriculum, which simultaneously addresses their academic strengths, needs, and learning 

preferences. In particular, this research on instruction should incorporate classroom observations. 

While mathematical task interviews provide detailed data on individual student thinking, it is 

difficult to make sense of students’ mathematical thinking and instructional preferences without 

information about the type of instruction students have received. Research that couples 

observations of teaching methods with student understanding can serve as a valuable source of 

information to help inform instruction. 

For instruction to be effective for students with and without disability labels, mathematics 

ICT co-teachers need guidance and support. General education and special education teachers 

have beliefs about their pedagogy and instruction. In addition, educators have vast knowledge 

and experience on ways to plan, implement, and manage instruction. Mathematics education 

researchers, curriculum developers, and administration cannot simply tell teachers to implement 

an inquiry-based curriculum without appropriate professional development, particularly when 

supporting students with LD. Because little research on students with LD participating in a 

standards-based or inquiry-based curriculum exists (Lambert & Sugita, 2016), professional 

development on how to support students with LD may be limited. Curriculum developers may 

suggest common scaffolds for students with LD, such as utilizing graphic organizers, creating a 

word bank, or simplifying the task. For instance, in an inquiry-based curriculum utilized 

throughout the state in which this study was conducted, students were asked to find the value of x 
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to make the equation 9(4 – 2x) – 3 = 4 – 6(3x – 5) linear. Within this curriculum, the only 

suggested scaffold provided for students with diverse learning needs on this task was to simplify 

the equation to 9(4 – 2x) – 3 = -18x. Little information was given on how else to assist or instruct 

students with LD or other disability labels on this task. As such, there is a need for research on 

how to implement inquiry-based instruction within an ICT mathematics class effectively. The 

findings from this study suggest that educators can use a mix of instructional strategies within an 

inquiry-based lesson or curriculum to support students with LD, such as instances of explicit 

instruction. However, what does incorporating both inquiry-based and explicit instruction within 

the same lesson look like when implemented? How might teachers use their own knowledge and 

experience to gauge topics that students with LD can explore using their prior knowledge instead 

of other topics in which they might need explicit instruction? Rather than focusing on one 

instructional practice, how does using a mix of practices help to build the conceptual 

understanding of students with LD? Ultimately, teachers need resources and support to 

implement new instructional approaches in ICT mathematics classes. For that to be possible, 

more research is needed to determine effective practices, strategies, and examples.  

Implications for Practice 

As stated previously, students with LD are experts in their own classroom experience. 

Too often, classroom instruction in mathematics is structured so that teachers are the sole 

providers of feedback. Little time during a class period allows students to share their thoughts 

about the way in which teachers implement instruction. Not only do they have thoughts about 

their mathematics instruction, but also students with LD can clearly articulate these preferences 

with their teachers and mathematics education researchers. The only way that teachers will meet 

the needs of their students with LD is through giving students a voice. As such, it is imperative 
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that mathematics education researchers and educators ask students with LD about their 

preferences for instruction directly, and they must continue to ask, as answers are not universal 

and will differ among contexts and students (Cook-Sather, 2002). Furthermore, after giving 

students the opportunity to share their thoughts, teachers must consider these needs when 

planning instruction. Educators can use insights from students with LD to modify and 

accommodate instruction that supports a conceptual development while still maintaining the 

academic rigor of the content, lesson, and task. 

Rather than making assumptions based on disability labels or learning trajectories, 

teachers may want to learn the strengths of their students with LD. Mathematics educators and 

researchers should not automatically assume that inquiry-based instruction is too cognitively 

challenging for students with LD. Similarly, educators should not believe that students with LD 

cannot undertake more complex and abstract mathematical tasks or develop a conceptual 

understanding of algebraic concepts. Students with LD in this study recognized the essential 

concepts of a linear function and attempted to find the rate of change and y-intercept using 

procedural approaches. While solving for the rate of change and y-intercept, five of the six 

participants used mathematically valid approaches. However, some participants did make 

calculation errors when completing tasks. Although participants showed a limited conceptual 

understanding, educators can use students’ strengths to help highlight mathematical connections. 

For instance, in this study, participants recognized that they could use coordinates from a 

graphical representation and a table of values to write a linear equation. Teachers can use this 

knowledge to demonstrate the relationship between various representations of linear functions, 

which can help students with LD develop a deeper understanding of the rate of change and y-

intercept. As such, teachers may want to consider utilizing a mixture of instructional practices to 
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educate students with LD. More importantly, teachers should try not to make assumptions about 

students with LD abilities to complete complex mathematical tasks or understand abstract 

algebraic concepts. 

In this study, participants overwhelmingly shared that they preferred explicit instruction 

in mathematics. During their interview, participants highlighted that they liked when their 

teachers broke down new mathematical concepts into smaller steps. Additionally, participants 

found it advantageous for their learning when their co-teachers included guided practice and 

instances of repeated exposure during explicit instruction. Explicit instruction has been noted as 

a beneficial instructional practice for students with LD (Bryant et al., 2003; Jitendra, 2013; 

McLeskey et al., 2017), in which students, as a group, have shown statistically significant growth 

from pretest to posttest scores (Gersten et al., 2009). However, many studies that used explicit 

instruction as an intervention focused on mathematical skills or concepts at the elementary 

school level (Gersten et al., 2009). One argument against explicit instruction is that it may hinder 

an in-depth understanding of more abstract concepts (Lambert, 2018), such as linear functions. 

Because students are focused on following the steps of a procedure, it was unknown whether 

students knew when and how to apply a procedure to a task given at a later date or in a different 

form. In this study, five of the six participants attempted to apply a relevant procedure to find the 

rate of change and y-intercept. As some of the participants were entering 11th and 12th grade at 

the time of the study, the findings suggest that they recalled a procedure previously taught and 

applied it appropriately during the mathematical task interview. The use of procedures taught 

through explicit instruction can be a sound instructional practice for students with LD when 

teaching algebraic concepts. If students with LD prefer explicit instruction, teachers can 

incorporate instances of explicit instruction to meet their needs. With that said, when teaching 
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procedures using explicit instruction, it is imperative that teachers make connections and use 

multiple representations to aid students in their development of a deeper understanding of the 

concept. While students can learn how to follow the steps of a procedure, they should also learn 

the rationale as to why the procedure works. Not only does understanding the relationship 

between the concept and procedure make mathematics more meaningful for students, but the 

hope is that this deeper understanding will foster students’ awareness of when and how to apply 

this procedure on future tasks. 

For co-teachers to succeed in meeting the needs of all students in an ICT class, co-

teachers must have a solid understanding of the various co-teaching models. More importantly, 

both teachers must buy into the notion of co-teaching. Simply assigning a general education 

teacher and a special education teacher to an ICT class does not mean that classroom instruction 

will differ from a traditional mathematics class. Many ICT mathematics classes are still 

structured in a way in which the general education teacher is the main teacher, and the special 

educator provides one-on-one or small group assistance (King-Sears & Strogilos, 2018). 

Furthermore, in mathematics, inquiry-based instruction and explicit instruction are often viewed 

as opposing instructional practices. As such, co-teachers must overcome their own underlying 

beliefs about pedagogy and work together to design instruction that meets the needs of all 

students. However, timing and staffing constraints may make it difficult for co-teachers to work 

together to plan appropriate instruction. Rather than teachers relying on either inquiry-based 

instruction or explicit instruction, both co-teachers can share their valuable knowledge and 

resources with each other in an effort to incorporate various instructional approaches within 

lessons on a regular basis. 
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Although more and more students with LD are educated within a general education 

classroom, students with LD as a group are performing below their peers on standardized tests 

such as the National Assessment of Educational Progress (NAEP; Cortiella & Horowitz, 2014). 

As such, there is a need to explore and better understand students with LD experiences in 

mathematics classes and their content knowledge. Is there a potential disconnect between 

mathematics instruction and student performance? Are co-teachers of ICT mathematics classes 

planning instruction based on students’ preferences and strengths?  Furthermore, are co-teachers 

making conscious or unconscious assumptions about students with LD mathematics abilities and 

skills? Are external pressures such as standards-based accountability measures forcing teachers 

to ignore students’ misunderstandings, rather than responsively adjusting and extending their 

instruction? As evident from this study, one promising way in which teachers and mathematics 

education researchers can support students with LD in mathematics is through interviewing 

students, listening to their preferences, and probing them to explain their mathematical 

knowledge of a concept. Participants in this study shared awareness of the notion that students 

think and learn differently. As such, participants wanted their teachers to take into consideration 

and honor these learning differences. Additionally, findings from this study suggest that not only 

can students with LD complete complex mathematical tasks that involve abstract algebraic 

concepts, but also their knowledge of linear functions did not drastically differ from the literature 

on students without disabilities. By giving voice and listening to students with LD, educators and 

researchers can make informed curriculum and instructional decisions. A deep conceptual 

understanding in mathematics can serve as a strong foundation for students with LD, which will 

allow them not only to gain entry but also to succeed in higher-level mathematics courses.  

Limitations 
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 In an attempt to reveal and highlight the voices of students with LD, interviews were used 

in this study to focus on the perspectives and knowledge of high school students with LD. 

Although using qualitative methods allowed a group of six high school students with LD to share 

their experiences with the researcher, this narrow scope was also a source of this study’s 

limitations. Semi-structured interviews and mathematical task interviews maximize the 

opportunity for participants to voice their preferences and share their knowledge. However, 

interview studies are limited because data were self-reported by participants. Data were limited 

to the information that participants chose to disclose at the time of the interview. Additionally, as 

there were a limited number of participants in this study, results must be interpreted with caution. 

The results of both semi-structured interviews and mathematical task interviews cannot be 

generalized beyond the participants in this study. However, results can be applied and transferred 

to contexts that are similar. In addition to providing more validity to the findings of this study, 

future research that includes a larger pool of participants could show a greater depth of students 

with LD instructional preferences in mathematics and their content knowledge of linear 

equations. Furthermore, this study was not limited to only students with a mathematics disability 

such as dyscalculia. Instead, any student with a LD was eligible to participate in this study. The 

rationale for the inclusion of all students with LD is that in the urban school district where this 

study took place, students’ Individualized Education Program (IEP) does not differentiate 

between the types of LD. Unless parents take their child for an evaluation outside of the school, 

the type of LD may remain unknown to educators, parents, and the student. Further research that 

focuses only on students with a mathematics LD may reveal other methods and instructional 

practices that teachers can use to support this particular group of students.   
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 This study was designed for the semi-structured interview and the mathematical task 

interview to be conducted in person. At the time the study was conducted, the COVID-19 

pandemic forced school closures and citywide shutdowns throughout the urban area in which this 

study was conducted. As a result, both the semi-structured interview and the mathematical task 

interview were conducted virtually through Zoom. The use of this platform may have influenced 

participants’ responses. Additionally, interviews using Zoom were conducted in July and August, 

after participants in this study received approximately three months of remote instruction. 

Participants’ experiences with remote instruction may have influenced their responses about their 

mathematics instruction and their knowledge about linear functions. In the original design of this 

study, the mathematical tasks were going to be printed by the researcher and given to each 

participant so that they could complete the tasks on paper using a pencil. Because mathematical 

task interviews were conducted virtually, the mathematical tasks were administered to 

participants using PearDeck, a Google Slides Add-On. The use of this platform allowed 

participants to view and complete the mathematical tasks on any electronic device, and it 

allowed the researcher to view their responses in real-time. However, the use of this platform 

may have limited participants’ responses, as many of the participants were unfamiliar with the 

program. In addition, this platform may have been limiting because participants were 

accustomed to and comfortable with completing their mathematics work on paper. During the 

mathematical task interview, participants quickly learned the virtual platform, and they showed 

ease and proficiency when using it. Further research should be conducted with more participants 

using virtual platforms to explore the benefits of using these platforms as a method for educators 

and researchers to conduct mathematical task interviews. 
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APPENDIX C 

INTERNET SCREENING SURVEY  
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APPENDIX D 

PARENT PERMISSION AND ADOLESCENT ASSENT FORMS  
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APPENDIX E 

SEMI-STRUCTURED INTERVIEW QUESTIONS 
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Interview Questions with Probing Questions 
 

Interview Question Probing Questions 

How do you feel about your 

current math class?  

What are some things that you like about your teachers? 

What are some things that you dislike about your teachers? 

Is the class easy? Hard? Why? 

Do you feel like you can be successful in this class? Why 

or why not? 

How do your teachers 

structure their mathematics 

class? 

Describe how class starts. 

Explain the way that your teachers introduce new material 

What types of work do you complete during class? Group 

activities? Worksheets? Projects? 

How do your teachers end class?  

Describe some of the things 

that your mathematics 

teachers do that you find most 

helpful when learning math 

concepts. 

Why do you think it is helpful? 

Describe the type of instruction and problems/activities 

you find helpful. 

What are some things that your teachers do that you do not 

find helpful? 

Name one or two things that you wish your teachers would 

do to support you in math class. 

Is there anything that you 

would change about your 

current teachers’ instruction 

in mathematics? 

Describe how you would change it. 

Why would you change it? 

Thinking back to all of your 

math classes and teachers in 

the past, which do you think 

were the best at teaching you 

math concepts and why? 

 

 

 

 

 

 

 

Describe the type of teaching in math class that you like 

best. 
 

Name the types of activities and instruction you believe 

you need in order to be successful in math class. 
 

Do you find it helpful for your teacher to show you how to 

complete the task first or for you to be given a task and try 

to figure it out on your own? Why? 
 

Do you think it is helpful for your teachers to give you 

reference points to support your understanding and 

learning? Why or why not? 
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 APPENDIX F 

MATHEMATICAL TASK INTERVIEW – TASK AND PROBING QUESTIONS  
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TASK # 2 
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TASK #3 
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Probing Questions  

 

For each part of the task, the interviewer read the task aloud. The interviewer asked the 

participant to explain his/her/their work aloud while solving. The interviewer asked the 

following probing questions during the mathematical task:  

 

1. Why did you write that?  

2. How did you solve that?  

3. How did you go about completing this problem? 

4. What was the first thing you did? Why? 

5. Please explain the meaning of your answer. What does your answer mean?  

6. Did you use any strategies or tricks to remember this type of problem?  

7. How did you know this graph matches with that person?  

8. What is the slope? Rate of change? Tell me more about what you are thinking.  

9. What is the y-intercept? How do you know? Tell me more about what you are thinking. 

10. What is the meaning of the rate of change?  

11. What is the meaning of the y-intercept? 
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APPENDIX G 

ALIGNMENT OF MATHEMATICAL TASK INTERVIEW WITH LITERATURE  
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Alignment of Mathematical Task Interview with Literature 

 

Big Idea Task  

Number 

Question 

Rate of Change 1 Write an equation for the function. Show your work.  

 1 What is the rate of change? How do you know? 

 2 Explain what the rate of change of f(x) means in the 

given context. 

 3 Here are some illustrations. Match each person with a 

graph and explain how you decided 

 3 Match the following 3 equations with the student.  

Y-Intercept 1 Write an equation for the function. Show your work.  

 1 What is the y-intercept? How do you know? 

 2 Write a linear function f(x) that represents the data 

 2 Explain what the y-intercept of f(x) means in the given 

context. 

 3 Here are some illustrations. Match each person with a 

graph and explain how you decided 

Multiple 

Representations 

1 Write an equation for the function 

 2 Write a linear function f(x) that represents the data 

 3 Here are some graphs illustrating these situations. 

Match each person with a graph and explain how you 

decided.  

 3 In these equations, A is the amount of money and n is 

the number of months since January. Match the 

following 3 equations with the student. 

 3 Write a possible description for this linear function:     

A = 50n + 150 
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SEMI-STRUCTURED INTERVIEW CODE LIST 
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Code List  

 

Code Data Exemplar 

Breaking Down Content It was helpful that we had her break down the problem into 

steps for us to understand.  

 

Reference Points Maybe like posters in the room with some of the stuff that we 

have learned. Give me examples so I can look at the example 

and if I get stuck, I could look back.  

 

Guided Practice I like how she would do one problem together, and then we 

would do one problem on our own, and she would check it 

before we would go into groups or do our worksheet. 

 

Repeated Exposure I think the teacher has one type of problem and they break 

that problem down. But not just one time. They need to do it 

a few times and let us try it a few times.  

 

Multiple Ways to Solve I like when teachers explain it in so many different ways that 

all of us would understand it in our own unique way. 

 

Pacing They didn’t give us enough time to finish our work. 

 

Re-explaining She will come to us when we do not understand and explain 

it again. 

 

Ownership of Learning Sometimes I wouldn’t understand some of the stuff that they 

were saying, but I would like  

try to teach myself. 

 

Asking for Help If I still didn’t get it, I would ask the teachers questions or 

ask for help 

 

Seeking Extra Help Even if I didn’t understand it, they would always try to keep 

me after school or go to  

programs or come up at lunch. They were always there to 

help us if we needed it. 

 

Group Work Sometimes the teachers would break us into groups and one 

teacher would work with one  

group and another teacher would work with another group. 
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Code List 

 

Code Data Exemplar 

Sign of the Rate of Change Because she has 250 and the line was decreasing because she 

was paying, so it is negative.  

 

There is no money putting in or taking out of the account. It is 

just staying the same.  

 

This graph is also increasing. 

 

Procedural Approach So that would be 7 – 9 over 3 – 2. So that would be 7 minus 9 

is -2 over 1, which is -2. M equals -2.  

 

I counted the boxes.  

 

Because when I knew that 7.50 and 9 goes by 2.50. 

 

Y-Intercept as a Separate 

Entity 

Because, well, it shows how much money she has in her 

account already and it shows how much money she is saving. 

 

Because it is 100 in January and then she saved 25 each 

month. 

 

The y-intercept represents how much she spends in total. 

  

Reliance on Algebraic 

Equations 

I would take an equation, and I would put it into the equation. 

I would take the (3, 7) and I would put the 3 in the spot of the 

x and the 7 in for y.  

 

I think I can use substitution to do this using one of the points.  

Straight Line Because this one wouldn’t be in a straight line.  

 

It makes a straight line.  
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Member Check 

 

Q9 Thank you for participating in this research study. I would like to ask you a few questions 

about the patterns I found across all of the students that participated in this study.   

This survey will take about 10 minutes. You do not have to answer any questions you do not 

wish to answer or are uncomfortable answering, and you may stop at any time. Your 

participation in this member check is completely voluntary.   

 

We will make our best efforts to keep your answers confidential. No one except for the research 

team will have access to your answers. 

 

If you have any questions, comments or concerns about the research, you can contact to one of 

the following researchers: 

-Kayla Neill (kneill16@huntersoe.org; 516-351-8385) 

-Nicora Placa (np798@hunter.cuny.edu; 212-772-5667)   

 

Additionally, if you have questions about your rights, or you have comments or concerns that 

you would like to discuss with someone other than the researchers, please call the CUNY 

Research Compliance Administrator at 646-664-8918. Alternately, you can write to: 

 

CUNY Office of the Vice Chancellor for Research 

Attn: Research Compliance Administrator 

205 East 42nd Street 

New York, NY 10017 

o I consent to participating in the member check  (1)  

o I do not consent to participating in the member check  (2)  

 

Skip To: End of Survey If Thank you for participating in this research study. I would like to ask 

you a few questions about... = I do not consent to participating in the member check 

 

Page Break  
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Q10  

Mathematical Task Interview Findings:  

1. Students used a procedural approach the most such as the slope-formula or counted boxes on 

the graph to find the rate of change.  

 

2. Students preferred to use an algebraic equation and procedure to find the y-intercept 

(substitution using one coordinate pair).  

 

3. Students could match a real-world description with a graphical representation and algebraic 

equation.  

 

4. Students knew that the sign of the rate of change is important.  

 

5. Students had a difficult time explaining the meaning of the rate of change and y-intercept in 

terms of the amount it cost Tanya to make each greeting card.  

 

ICT Mathematics Instruction Interview Findings:   

1. Students prefer their teachers to break down mathematics instruction and provide several 

opportunities for students to practice together with the teacher.  

 

2. Students like when teachers show them multiple ways to solve a problem and when teachers 

allow them to use the method that works best for them.  

 

3. For the most part, students think that the speed of mathematics class is too fast. Students do 

not always have enough time to follow along, ask questions, and complete their work.  

 

4. Students like when their teachers allow them to work in groups, so that they can share their 

understanding and learn from their peers. However, not all of their teachers give them time to 

work in groups.  

 

5. Students seek outside help from their teacher or other teachers during their free time such as at 

lunch or after school.  

 

Conclusions 

Students show an understanding of linear functions. Students can match real-world descriptions 

with a graph and an algebraic equation. Students can write an equation based on a given 

description. Students know when and how to use the slope-formula to find the rate of change. 

Students know when to use substitution to find the y-intercept. Students can identify the rate of 

change and y-intercept and write an algebraic equation in slope-intercept form. However, 
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students have a more difficult time trying to explain what the rate of change and the y-intercept 

mean.  

 

Students prefer direct instruction in mathematics. This is when the teacher breaks down a 

concept several times for students. Students like to follow along as the teacher breaks it down. 

They prefer when the teachers goes over it a few times so that they can understand it before 

trying to do the math on their own. Students shared that they are aware that all students learn 

differently. Because of this, they want their teachers to show them more than 1 way to solve a 

problem. They also like when their teachers allow them to use whichever method works best for 

them to solve. They do not like when their teachers only show them 1 method to solve and force 

them all to use that 1 method. Students feel that the speed of the class is too fast. The teacher 

moves on to the next problem and next topic before students feel comfortable with the work. 

Students like to work in groups so that they can talk to their classmates about the work and learn 

from each other.  

 

Suggestions for Mathematics Teachers  

Mathematics teachers should break down new mathematics problems for students. They should 

go over a few of the same kinds of problems before asking students to complete the work on 

their own. Mathematics teachers should also try to explain the new math topic in a few different 

ways because not all students think the same. A method that works for 1 students may not work 

for another student. Students like to hear different methods and they like to use the one that they 

like the most to complete their work. Teachers should give them this option. Teachers should 

also slow down the pace of instruction. Students want to feel more comfortable with the math 

work before the teacher moves on to another problem or another topic. Teachers should check in 

with students to make sure they understand the problem and are ready to move on to the next. 

Teachers should also include more group work. Students like to work in groups because they like 

to share their thoughts and hear how their classmates did the work. Students feel that they can 

learn from each other. They also like when the teacher will come over to them in their small 

groups to re-explain something or to answer questions.  

 

 

Page Break  
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Q1 Do the findings accurately describe what was discussed during your mathematical task 

interview?  

o Yes  (1)  

o No  (2)  

 

Skip To: Q2 If Do the findings accurately describe what was discussed during your mathematical 

task interview?  = Yes 

 

 

Q7 If you selected "no," please explain why.  

________________________________________________________________ 

 

 

Page Break  

 

Q2 Do the findings accurately describe what was discussed during your interview about your 

thoughts and feelings of your mathematics instruction?  

o Yes  (1)  

o No  (2)  

o Sort Of  (3)  

 

Skip To: Q3 If Do the findings accurately describe what was discussed during your interview 

about your thoughts... = Yes 

 

 

Q8 If you selected "sort of" or if you selected "no," please explain why.  

________________________________________________________________ 

 

 

Page Break  
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Q3 Do you think the conclusions make sense?  

o Strongly agree  (1)  

o Agree  (2)  

o Somewhat agree  (3)  

o Neither agree nor disagree  (4)  

o Somewhat disagree  (5)  

o Disagree  (6)  

o Strongly disagree  (7)  

 

 

 

Q4 Do you think the suggestions for math teachers of students with Learning Disabilities make 

sense? Why or why not? 

________________________________________________________________ 

 

 

 

Q5 What other thoughts do you have about the findings? 

________________________________________________________________ 

 

 

 

Q6 Do you have any other comments?  

________________________________________________________________ 

 

 

Page Break  
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Q11 Thank you for participating in this member check. If you have questions, please contact 

either researcher or CUNY: 

 

 

-Kayla Neill (kneill16@huntersoe.org; 516-351-8385) 

-Nicora Placa (np798@hunter.cuny.edu; 212-772-5667)  

or CUNY Research Compliance Administrator at 646-664-8918.  

 

 

Alternately, you can write to: 

 

CUNY Office of the Vice Chancellor for Research 

Attn: Research Compliance Administrator 

205 East 42nd Street 

New York, NY 10017 

 

End of Block: Default Question Block 
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